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1. Introduction

This report provides a detailed final summary of research conducted under

NASA Grant NAG-I-657 entitled,"Reynolds Stress Closure in Jet Flows Using

Wave Models."

The goal of the research has been to develop turbulence closure schemes, free

of model constants, that predict the development of jet flows. In particular, the

unsteady characteristics at the large scale were to be modeled and the models were

to be applicable to jets of arbitrary geometry. In addition, the modeling scheme

had to be computationally inexpensive. This eliminated the possibility of Direct

Numerical Simulations or Large Eddy Simulations.

The models developed under this program have achieved the goals of being free

of model constants and being computational]y inexpensive but the closure schemes

were not applied to jet flows. Instead, the closure scheme was developed for a

two-dimensional mixing layer. Extensions of the closure scheme to circular and

non-circular jets flows is the subject of ongoing research activity under separate

funding. However, the numerical procedures to apply the closure scheme to non-

circular jets have been developed. This permits the local characteristics of the

large scale structures to be calculated. In addition, the shock cell structure in

non-circular jets, operating off-design, has been calculated.

The modeling procedure is described in detail in the subsequent chapters. How-

ever it may be summarized as the response to the following questions.

1) If the time-averaged flow properties are known, can the most likely unsteady

flow field be deduced?

2) If the time-averaged turbulent stresses associated with this unsteady flow 6eld

are calculated, are they compatible with the original time-averaged velocity

and temperature fields?

The answer to both these questions appears to be "yes" for the free shear flows

examined. Such flows are dynamically unstable and are dominated by their most

unstable, linear instabilities. The advantage of such an approach is that it models

the unsteady flow field directly using a phenomenological model. It has no need to



resort to model constants to close the higher order equations that are encountered

in traditional models. However, the models have yet to be tested in more complex

configurations. It is likely that models such as the one described in this report

will act as guides for the modeling procedures in conventional Reynolds-averaged

models. This will enable more physically realistic models to be incorporated in

these closure schemes.

The chapters of this report represent either publications or manuscripts sub-

mitted for publication by the principal investigator and the research assistants. The

three research assistants who have worked on this project each earned a Ph.D. de-

gree. Many details of the research are given in their theses. The student names and

their thesis titles are:

Roy S. Baty, "Reynolds Stress Closure in Jet Flows Using Instability Wave

Modeling," Ph.D. thesis, Department of Aerospace Engineering, The Pennsyl-

vania State University, 1989.

Thonse R. S. Bhat, "Linear Models for the Shock Cell Structure of Super-

sonic Jets with Noncircular Exit Geometries," Ph.D. thesis, Department of

Aerospace Engineering, The Pennsylvania State University, 1990.

William W.-W. Liou, "Weakly Nonlinear Models for Turbulent Free Shear

Flows," Ph.D. thesis, Department of Aerospace Engineering, The Pennsylvania

State University, 1990.

The outline of this report is as follows. Chapter 3 contains a description of

the weakly nonlinear turbulence model developed by Liou. An essential part of

the application of such a closure scheme to general geometry jets is the solution of

the local hydrodynamic stability equation for a given jet cross-section. Chapter 4

describes the conformal mapping schemes used by Baty to map such geometries onto

a simple computational domain. Chapter 5 describes Baty's solution of the stability

problem for circular, elliptic and rectangular geometries. In Chapter 6 Bhat's use

of linear models for the shock cell structure in non-circular jets is given. The

Appendices contain reprints of papers also published during this study. Appendix

I describes the instability of elliptic jets. Appendix II provides a technique for



predictingthe shock cellstructurein non--circularjetsusing a vortex sheet model.

Finally,Appendix Illdescribesthe resonant interactionbetween twin supersonic

jets.

Each of the component parts of thisresearch program provide progress toward

the predictionof the development ofjetsfrom arbitrarygeometry nozzles including

theirunsteady turbulentstructureat the largescale.It also provides the basis for

the predictionof theirnear-fieldpressure fluctuationsand theirradiated noise.
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support of NASA Langley Research Center. In particular, the guidance and flex-

ibility of the technical monitor, Dr. J. M. Seiner are appreciated. In addition,
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WAVE MODELS FOR TURBULENT

FREE SHEAR FLOWS

W. W. Liou and P. J. Morris
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ABSTRACT

New predictive closure models for turbulent free shear flows are presented in this paper.

The), are based on an instability wave description of the dominant large--scale structures

in these flows using a quasi-linear theory. Three models have been developed to stud),

the structural dynamics of turbu)ent motions of different scales in free shear flows. The

local characteristics of the large-scale motions are described using linear theory. Their

amplitude is determined from an energy integral analysis. The models have been applied

to the stud), of an incompressible free mixing layer. In all cases, predictions are made for the

development of the mean flow fie]& In the last model , predictions of the time-dependent

motion of the large--scale structure of the mixing region are made. The predictions show

good agreement with experimental observations.

I.INTRODUCTION

Though the presence and importance of large-scale coherent structures to the mixing

process in free shear flows has been recognized for many years, turbulence models that

incorporate these observations have been very limited. The use of direct numerical or large

eddy simulations provide a detailed prediction of the large-scale motions in low and high

Reynolds number turbulent flows respectively. But these predictions are computationally

expensive and are still limited in general to simple boundary conditions. The present

model makes use of experimental observations in excited turbulent flows or conditional

sampling measurements to provide a simple model of the large scale motions which is

computationally inexpensive.

Most current turbulent flow calculations for practical applications use the long time-

averaged .Navier-Stokes equations. Turbulence models are needed to evaluate the unknown

correlation terms: the l_eyno]ds stresses, that appear when the statistical averaging process

is applied to the nonlinear convective terms in the equations. This is the closure problem.

There are closure models of various orders that have been pr_o½ec_: These .models are

usually based on the notion that the high-order moments of fluctuations can be repre-

sented reasonably wel] as functionals of moments of lower order. Work in this regard is

voluminous and will not be elaborated on here. Some models are quite successful and

have become very popular in engineering flow calculations. However. they usual]y involve

a large number of model constants determined by comparison with experimental data.



Thus, thesemodelsarenot entirely predictivebut, in someways,representa sophisticated
correlation of experimentaldata.

The present modelsare based on observations of large-scale coherent structures in free

mixing layers. Brown and Roshko (1974), among others, observed that these orderly

motions dominate the dynamics and the structure of free shear fiow_ like wakes, jets and

mixing layers. The structures appear in both low- and high-speed flows. They have also

been observed in many flow geometries.

This paper is concerned with new, predictive turbulence models for free shear flows. The

models simulate the propagating large-scale structures as spatially travelling instability

waves. In this paper, we focus on the validation of the wave models as well as a determina-

tion of their limitations. Predictions are made for a two-dimensional incompressible free

mixing }ayer. This will provide guidelines for applications of the models to more complex

configurations.

II.THE WAVE MODELS

The wave models presented here are used to make a direct calculation of the large-

scale, characteristic structures. The fundamental idea is that the large-scale structures

may be modeled using a quasi-linear theory. The local characteristics of these structures

may be described by linear instability theory. This has been demonstrated by the ex-

periments of Gaster, Kit and Wygnanski (1985) and Petersen and Samet (1988), among

others. In their experiments they compared predictions of the aznplitude and phase of

the axial velocity fluctuations, based on linear s_abil]ty theory, with phase-averaged mea-

surements in an excited shear layer and a jet. The agreement between predictions and

experiment was very good though only normalized distributions of amplitude and phase,

not the absolute amplitude, were predicted. This close agreement between the predic-

tions of linear stability theory and the properties of the large-scale coherent sturctures has

formed the basis for theories of turbulent mixing and supersonic jet noise generation and

radiation. For example: Tam and Morris (1980) and Tam and Burton (1984) predicted

the noise radiation from instability waves in supersonic shear ]ayers and jets and obtained

very good agreement with experiment. Their analyses showed that the behavior of the

large-scale disturbances could be modeled satisfactorily using a quasi-linear theory, even

though the waves were not infinitesimal in magnitude. However, an important element of

these calculations, the velocity profiles of the mean flow, that are needed for the linear

stability calculations, are obtained from experiments. Their approaches provide a closure,

but are not predictive. The models proposed here establish a complete closure mode] us-

ing a simple quasi-linear theory for the }arge-sca}e motion. In the present mode] bo_,h

the mean flow and the time-dependent turbulent motions at the large-scale are obtained

simultaneously as a solution.

II.a Analysis
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Turbulent flows generally contain broadband fluctuations and are traditionally treated

as random processes. These processes are then described by statistical averages. The

observation and justification of the occurrence of orderly and coherent large-scale turbulent

fluctuations in turbulent free flows encourage an interpretation of these turbulent flows

using a quasi-deterministic description.

In light of the existence of coherent structures, it is appropriate to decompose an

instantaneous flow property into three parts. That is,

f

fi : Fi + fi + fi (1)

The fluctuation with respect to the mean quantity, F,, is separated into two components:

one representing the dominant large-scale motion, f_, and the other representing the small-
I

scale fluctuation, f_. The mean flow component is obtained from a long time-average of

its instantaneous value and is given by

- 1 for,/,dr (2)

A short time-average may be defined by

1 .LT'/,dt (3)

where T2 is much smaller than T1, but much larger than the characteristic time scale of

the background small-scale fluctuation. The mean flow represents an average over many

realizations for a long period of time and thus is the profile that is most probably seen by the

large-scale structures which occur randomly in space and time. Ln this approach, mean

flow properties and large-scale fluctuations can be obtained explicitly. The small-scale

turbulence which provides additional mixing at smaller scales compared to the mean and

the large-scale motions is treated separately. The governing equations for the mean flow can

be derived by long time-averaging the Navier-Stokes equations. Equations governing the

large-scale fluctuations can then be obtained by subtracting the resulting mean equations

from the short time-averaged Navier-Stokes equations. The governing equations for the

mean flow ate

aU¢-- = o
c3xi

ujaU_ a aP 1 O2U_+ --' u'- ' _ + (4.a)
c3z:. azj (u-T_ . _u_ j = az_ I_e c3z:.az_

where the interactions between motions of disparate scales are assumed to be negligible.

The equations can be simplified further by applying the boundary-layer approximation.

]:or two-dimensional flows, the resulting equations are

c_U aV
= o.

az 8y
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In order to close the governing equations, the long time-averaged one-point correlations

of the large- and small-scale motions in the mean equation have to be provided. Here, the

large-scale motions are calculated by solving their governing equations. These equations

can be obtained by subtracting the mean equations from the short time-averaged Navier-

= o (6.4
axi

Stokes equations:

aui oui ou, 8 Op

+ g, + - -

' ' (6.b)l 82u; a (< u_u: > -u_uj)
+ .Re azj.c_z: azj

Gaster et at. (1985) argued that the nonlinear terms can be neglected and showed that

the local characteristics of the large-scale fluctuations in mixing layers can be described

surprisingly well by linear theory. In fact, some weakly nonlinear solutions in hydrodynamic

stability, for example, Stuart (1958), assume that the local shapes of the finite amplitude

disturbances are those obtained by linear theory. Therefore, it is assumed here that locally

the large-scale turbulent structures may be described by linear analysis and that their

behavior is only weakly nonlinear. Hence, all the nonlinear interaction terms are neglected

in the present formulation.

The next assumption is that molecular viscous effects are unimportant. Davis and

Moore (1985), in a numerical stud), of plane and axisymmetric mixing layers, found that

the effect of decreasing the Reynolds number is to smear the vorticities without altering

the dynamics of the large-scale structures. This phenomenon can also be observed in the

experimental results of Brown and Roshko (1974) and Konrad (1976). In a mixing layer

calculation, Tam and Chen (1979) showed that for a Keynolds number over 300, based

on the local width, the unstable waves are not affected by the Reynolds number. In fact,

increasing the Reynolds number produces more small-scale structures without significantly

altering the dynamics of the structure of large scales. Viscous effects are thus of minor

importance in the development of the large-scale structure and are, therefore, neglected in

the present approach. Computationally, this approximation also means a huge saving in

computer time.

The equations for the large-scale fluctuations can be simplified further by assuming

that the mean flow is locally parallel. For free shear flows like mixing layers: wakes and jets,

mean flows diverge slowly and this renders the locally parallel flow assumption applicable.

For two-dimensional problems, the equations governing the large-scale unsteady turbulent

motions., after introducing the above three physical assumptions, become

0u vhv
+ --0 (7.4

8z 8y



at, u aV _ Op (7.c)
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These equations, when solved, provide not on}3" the information t_at is necessary to close

the system of equations for the mean flow, but also the behavior of the large-scale turbulent

motion.

Since the coefficients in equation (7) are functions of y only, a simple separable form

of solutions may be assumed,

{u, v, p) = A(_)_{Ia(y),_(y),_(_))e:p Ii(_- _t)]) (s)

where bold face quantities indicate a complex solution whose real parts lead to real quan-

tities and g_ denotes the real part of a complex number, a is a complex wavenumber and

w represents the frequency. These are the normal mode representations generally used in

hydrodynamic stability. The amplitude function A(z) appears as a parameter for local

calculations and is determined by the large-scale kinetic energy equation. This weakly

nonlinear approach is usually referred to as a ':wave envelop" method. In free shear flows,

large-scale structures occur randomly in space and time and propagate downstream in

the form of quasi-periodic travelling waves. The wave-like solutions, equation (8), thus

represent physical phenomena as well. The resulting equations obtained by substituting

these expressions into the linearized inviscid equations for the large-scale disturbances can

be reduced further to a second order ordinary differential equation in terms of _5:

d2U

dv_'d _) - _77y_}_ = o (9)_(_u - _ )(

Equation (9) is the incompressible Rayleigh equation, R.ayleigh (1880).

For a given mean velocity profile and appropriate homogeneous boundary conditions;

equation (9) forms an eigenvalue problem. In the present analysis: the complex wavenum-

ber, a, of the disturbance is the eigenvalue. Note that the wavenumber appears nonlinearly

in the problem. In addition to a traditional shooting procedure, three global approximation

methods are applied in the solution of equation. These include the Chebyshev spectral

approximation, a psuedospectra] Chebyshev collocation method and a finite difference
method.

The amplitude function A(z) introduced in equation (8) along with the conventional

normal mode representation determines the amplitudes of the coherenI fluctuations. In the

present analysis, the amplitude is deLermined by the kinetic energy equations for the large-

scale fluctuations. Therefore, instead of growing exponentially, exp(-2ai): as would be

predicted by linear theory, the development of the amplitude function is determined by the

conservation of the kinetic energy of the large structures. Equations for the kinetic energy

of the large-scale fluctuations can be obtained by mu]tiplying the momentum equations



for u,., equation (6.b), by u, and tong time-averaging the resulting equation. The energy

equation for the large-scale fluctuations can be written as:

Ok 0b', 0 (uyk + P%) - (- < u%' >)Ou'
I _ C_7;. 7

0
'u' >) + viscous terms (10)(lzi < 11 i j.

Oz i

where k = _u,.u'---_. Since the large-scale structures are inviscid in nature, the terms involving

viscosity are negligible. Production of the large structure kinetic energy is positive if -ttittj

and OUi/azj are of the same sign, negative otherwise. Regions of "negative production"

associated with the large-scale coherent structures have been observed, Komori and Udea

(1985) and Hussain and Zaman (1985). Conventional eddy viscosity models fail to predict

this phenomenon. Since the basic assumption of these models is that momentum exchanges

are proportional to local mean flow gradients. That is, eddy viscosity models predict co-

gradient momentum transport, or positive production of turbulent kinetic energy by their

nature. In fact, the dominant struct_ures in free shear fows are of large scale. The large-

scale structures transport fluid elements across the flow unmixed and this is not directly

related to local mean flow gradients. Energy is subsequently extracted from the large-scale

motion and dissipated at the high frequency end of the wave number spectrum. The terms

' ' >, describe the draining of energy fromcontaining the residual stress tensor, - < uiuy

the waves. Very little information, experimentally or numerically, is currently available

regarding these stresses.

In the following section, three models are derived from the weakly nonlinear theory

described above. The weakly nonlinear theory is formulated for turbulent free shear flows

in general. As a test of the theory, these three models are derived for turbulent free mixing

layers. The laxge-scale structures observed in mixing layers present most of the features of

organized structures observed in turbulent free shear flows. A sketch of a turbulent mixing

layer is shown in Figure 1.

ll.b Model I

Free shear layers that possess inflectional-point instability, are inherently unstable.

As the flow develops, turbulence and/or background random noise provide perturbations

necessary to excite these unstable waves and promote initial vortex formation. Therefore,

the large-scale structures are made up of all modes residing in the flow. A complete simu-

lation of the large-scale turbulence spectrum would require the inclusion of a broad range

of frequency and spanwise wavenumber components. This was accomplished in the local

solution of Tam and Chen (1979) and the integral model of Morris and Giridharan (1990).

Figure 2 shows the unnormalized Reynolds shear stress distributions from Liou (1986) for

waves of various frequencies. The velocity profile of the basic flow is a hyperbolic tangent

function and the most unstable frequency for this flow is 0.2. The stress distributions are

normalized by their peak amplitudes. It can be seen that for a wide range of frequencies

6



around the least stable mode, the distributions of flow quantities due to the large-scale
fluctuation aresimilar. However,the mode that interactsmost strongly with the mean
flow is the onethat hasthe largestspatial growth rate: the most unstablewave. Thus, for
efficiency,insteadof including all the unstablewaves,it is assumedhere that the locally
least stable modesaremost effectivein extracting energyfrom the mean flow. The most

unstable waves are then used to describe the overall behavior of the coherent, large-scale

motions. :In other words, the large-scale motions are described by the local]), most ampli-

fying disturbances in the flow. The method used here to locate the most unstable modes

can be found in Liou (1986).

The Rayleigh equation, equation (9), governs the )oca] distribution of the large-scale

velocity fluctuation in the y direction. The equation is solved locally at each streamwise

location. The amplitude function A(z) is determined from the energy equation for the

large-scale structures, equation (10).

The equation for the amplitude function is obtained by substituting the wave form

expressions, equation (8), for the fluctuation components into the wave kinetic energy

equation and integrating across the flow. The resulting equation is

dGIA 2
-- G2 A = + Gs A s (11)

dx

where

u( e" + + 2.o
oo

where an asterisk denotes the complex conjugate. The terms containing the residual

stresses in G3 are responsible for draining energy from the waves. G3 is of crucial im-

portance in determining the wave amplitude and has to be considered carefully. :However,

very little experimental or theoretical results are available regarding these stresses. In the

following analysis, we assume that the energT transferred out of the large-scale fluctuations

is proportiona] to
U 3

-7- (12)

where u and l are the characteristic velocity and length scales of the large-scale motions.

This model assumes that the turbulence is in an equilibrium state for the small-scale

fluctuations. That is, the rate at which energy is transferred from the large scales is equal

to the rate at which the energy is dissipated by viscosity at the small scales. The net effect

of these terms may thus be modeled by

k312

z (13)

where C_ is a model constant. The energy drain integral, G3, becomes:

-,ifi" ' 3/2_- ,_,_") dy (14)



The amplitude of the wave structures can be calculated using an explicit fourth order

Runge-Kutta method or the implicit Euler method.

To solve the mean flow equations, the small-scale Reynolds shear stress -u'v' has to

be modeled. Since it is mainly the motion at the large scale that is considered here, a

simple zero-equation model is employed. That is,

r- au l(au
= _ ay

The model introduces an additional parameter, C2.

Thus, Model I contains two model constants: C1 used in the modeling of the energy

transfer term in the amplitude equation for the wave structures and C2 used in the simple

eddy viscosity mode] for the small-scale Reynolds stress, -ulv '.

II.c Model II

The large-scale structures in turbulent mixing layers are dynamically active and dom-

inant. Thus the development of the flow is mostly affected by turbulent motions of large

scale. Consequently, in this approach, only fluctuations at the large scale are included.

Thus, there is no direct interaction between the small-scale structures and the develop-

ment of the mean flow. This is also suggested by the analyses of Tam and Chen (1979)

and Morris and Giridharan (1989). The characteristics of the locally most unstable mode

is still considered to be representative of that of the large-scale structures. The energy

gained by the large-scale structures from the mean flow is prevented from becoming un-

bounded through the energy transfer terms in their energy equation. Thus, the influence

of the small-scale turbulence on the mean flow is indirectly through the energy balance of

the large-scale motion. In this model, the equations for the mean flow and the large-scale

structures are the same as those in Model I. The model contains only one model constant

, C1, that describes the transfer of energy from the large to the small scales. Nevertheless,

both Model I and II predict the average behavior of the shear layers.

II.d Model III

Model 111simulates the time-dependent motion, at the large scale, associated with the

passage of a train of large-scale structures. Experimental observations suggest that, even

if initially there exists a continuous spectrum of infinitesimal disturbances upstream of the

splitter plate, a disturbance emerges dominating over other neighboring perturbations in

the ear]}, stages of the flow deve]opment. As the flow evolves; however: there is a contin-

uous shift of the dominant component toward lower and lower frequencies. In fact, the

growth of an initially small per}odJc disturbance is often followed by the development of

subharmonics. In numerical simulations, however, the initial conditions can be conceived

in a much simptier way. Instead of monitoring the disturbances in the initial continu-

ous spectrum, a hierarchy of disturbances made up of the initially most unstable mode,

according to linear theory, and its subharmonics may be chosen. This reflects the %ubhar-

monic evolution model" proposed by Ho and Huang (1981). Thus, the unsteady turbulent

8



large-scalefluctuations aredescribedby the superpositionof the instability wavesin this
hierarchy. This enables the time-dependent flow field at the large scale to be simulated.

The solution methods for these equations are the same as in Model I and II. The equation

for the amplitude function, however, has to be modified. Firstly, it is assumed that inter-

actions between harmonics are negligible as there should be sufBc]ent phase jkter in the

unexcited shear layer. In addition, the details of the process of energy transfer from the

large to the small scales is not modeled explicitly. At each axial location where a given

instability wave saturates, or begins to decay, the energy is immediately removed from

the system. Consequent]),, there is no need to specify either a constant associated with

the energy transfer process or the effects of the interaction between the small-scale motion

and the mean flow. It should be noted that the energy equation is only solved for each

instability wave during its period of growth. For amplifying waves the comparison between

linear theory and experiments by Gaster eta]. (1985) showed that an inviscid ana)ys}s

is adequate. Thus, the interact}on between the large and small scales will be neglected

during the growing or unstable region for each instability wave.

The solution for the turbulent fluctuations is then fed back into the iteration process to

get the corrected mean flow solutions. A visualization of the unsteady flow field predicted

by Model III is made by means of streaklines. The streaklines are produced by injecting

passive marker particles at the initial location, z = xo at various points across the shear

layer. The positions of these particles at subsequent times can be calculated using the

equations:

-_x(t) = Y l_:Ct), yCt) ] + u [xCt), y(t), t] (16)

and

with

= v [ y(t) ) ]+ , [ =(t), y(t), t ], (17)

:(o)= =o,uj:(o)= yo, k= i,....m

Particles thus move at each time step according to the local instantaneous velocity field.

This concludes the description of the wave models. The dominant large-scale coher-

ent turbulent structures in turbulent free shear flows are modeled in a weakly nonlinear

manner. Three models are derived to ._imulate the development of turbulent free mixing

layers. These models connect the development of the mean flow field with the dynamics

of the large-scale turbulent fluctuations. The equations governing the mean flow field and

the unsteady large-scale turbulent motions form a closed system of equations.

III. :Numerical Procedure

The boundary-layer approximation renders the system of equations governing the mean

flow parabolic. A fourth order Keller-Box scheme is applied to solve the resulting equa-

tions. The equation for the instability wave, which is the l_ayleigh equation in the present

formulation, has been solved using various methods; including a traditional shooting, two

spectral and a finite difference methods. For spatial instability, the system of equations



generated by the global approximationsof the Rayleighequation forms an eigenvalue
problem which is nonlinear in its parameter,thewavenumber. It may besolvedusingthe
Linear CompanionMatrix methodor amethodbasedon matrix factorization, Bridgesand
Morris (1984). Details of the varioussolution schemescanbe found in Liou (1986,1990)
The Rayleighequation and the equationsfor the meanflow aresolvediteratively at each
s_,reamwise location. The convergence criterion for the iterations is

where el is a small number and M is the total number of grid points at each streamwise

location. The amplitudes of the waves are calculated explicitly using a fourth order Runge-

Kutta method applied to the wave energy equation (11)

IV. RESULTS AND DISCUSSIONS

The models have been tested in an incompressible free mixing layer. A hyperbolic

tangent distribution is taken as the shape of the initial streamwise mean velocity, U(zo, y),

i.e.,

1

U (x0, Y) = _ ( 1 + tanh (30y)). (19)

The initial cross-stream mean velocity, V (_o,y), can be set to a small number or zero.

The boundary conditions for the mean flow are

u ( ) = 1.0, u (=, = 00, v (=, ) = 0.0. (20)

where yu (x) and y_ (x) are the upper and the lower boundaries of the physical domain shown

in Figure 3. As a test of the ability of the instability wave model to describe large-scale

structures and the associated Reynolds stresses, the model was first applied in the self-

similar region of the flow with a mean velocity profile from Patel (1973). Figure 4 shows the

calculated and experimental Reynolds shear stress distributions. Calculated results using

a traditional shooting method compare favorably with that using global approximations

of various order. Note that all the calculated results have been normalized by the peak

experimental value. The discrepancy at the low-speed side of the layer suggested that the

momentum exchanges due to the small-scale turbulent motions might not be negligible

in this region. It should be noted that this negative value of Reynolds shear stress disap-

pears for small values of velocity in the lower stream. The structures obviously contribute

negative shear stress at the low-speed edge of the flow. This counter-gradient transport

of momentum gives negative energy production in this region. A similar phenomenon was

observed experimentally by Komori and Ueda (1985) in the self-similar region of a jet.

In fact, regions of negative shear stress can be easily observed if the large-scale struc-

tures are excited artificially, for example, see Wygnanski_ Oster and Fiedler (1979) This

counter-gradient momentum transfer decelerates and subsequently reverses the flow on

the low-speed side of the mixing layer as the shear layer develops.

10



l"V.a Model I

As noted above, Model I proposes that a contribution from the small-scale Reynolds

stresses is required to describe the total turbulent forces that determine the development

of the mean flow. The model introduces a new parameter, C2. Latigo (1979) argued that

the turbulent shear stress contributed by the small-scale, incoherent motions is about a

half of the total shear stress. An estimate of C2 based on the value that is used in the

classical eddy-viscosity models is then obtained. In addition, the force terms associated

with the large-scale normal stresses in the mean momentum equations are also retai_.ed,

since they are found to be of the same order as the other Reynolds stress gradient terms on

the low-speed edge of the shear layer. The normal stresses associated with the ]arge-sca)e

structures can be calculated directly by the wave models and involve no further empiricism.

In the numerical calculations, the local solution of the Rayleigh equation is found to be

time-consuming. To accelerate the axial marching an adaptive grid has been devised. The

grid size in the cross-stream direction in the transformed domain are fixed. The axial step

sizes are chosen such that the convergence indices of the first iteration at a downstream

station are greater than a fixed number e2.

The grids are found to cluster in a region where there are large changes of flow properties,

for example, when the flow is developing initially.

The initial wave amplitude represents the initial strength of the instability waves or large-

scale motions for which there are no quantitative experimental measurements. An estimate

of the initial wave amplitude can be made based on the initial energy flux of the turbulence.

From a sequence of numerical experiments, however, it is found that flows with relatively

strong initial amplitude saturate early. Subsequently the flow deve]ops in a similar manner;

on]y the virtual origin of mixing is changed. The initial amplitudes for the cases presented

in this paper are fixed at 5 x 10 -3. The corresponding initial turbulence intensity is about

1%. The model constant C1 of the energy _ransfer term in the wave kinetic energy equation

is taken from a conventional Prandtl energy model, Launder, et. al. (1979). It is found

that its va}ue has no significant influence on the results of the mixing layer calculations.The

values of C1 and C2 used here are

C1 = 2.8 , C2 = 0.08 (22)

Again, in Model I. turbu]ent forces associated with the wave shear and norton] stresses

as well as the small-scale motions are considered. Figure 5 shows the _xia] forces acting

on fluid elements across the layer at various &xia] stations. Negative or retarding forces

associated with the wave Reynolds shear stress appear near the zero speed side early in the

developing stages of the layer and never change sign as the flow develops. Nevertheless.
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the other two mechanisms, which are the gradients of the normal stresses of the turbulent

large-scale structures and of the shear stress of the small-scale turbulent fluctuations,

contribute positive driving forces. The net effect is the co-gradient momentum transport

near the zero velocity side of the layer. It can also be seen that the -(u 2 - t,2)= terms

plays a significant role in the dynamics of the mixing layer development, especiM]y near

the zero velocity side of the layer.

The growth of the layer measured by 6 is shown in Figure 6 6 is the distance between

the points where the local mean velocity is 0.9 and 0.1 of the main stream mean velocity,

U. The calculated rate of growth, d_/dz, agrees reasonably well with the value that is an

average taken over various experiments in the self-similar region of the flow.

Figure 7 shows the predicted axial mean velocities at a sequence of downstream sta-

tions as functions of the self-similar coordinate, r_. The agreement between the predictions

and experimental data is good except near the low speed side of the shear layer. The

layer has not reached self-similar state at x = 0.72 and local velocity profile differs from

Patel's self-similar ve}ocity profile. Note that for a free mixing }ayer, the accuracy of the

measured mean flow data in the low speed region is poor due to the rapid variations in

the instantaneous flow direction. Any agreement between results on the zero speed edge

is likely to be fortuitous.

As can be seen from Figure 8, which shows the shear stress distributions across the

mixing layer at various stations, the sum of the shear stresses from the large-scale and the

small-scale motions agrees well with experimental data. The experimental measurements

are the long time-averaged correlations of the turbulent fluctuations. Model I thus not

only predicts the mean velocity profiles but also appears to model correctly the turbulent

momentum transport in the layer. The latter is usually achieved only by using higher

order moment closure models, which includes a large number of model constants.

The amplitude of the large-scale fluctuations is plotted in Figure 9. The large-scale

structures extract energy from the mean flow and grow as the flow develops. However,

energT is also being transferred to the smaller scales and subsequent}y dissipated by viscos-

it)'. The final equilibrium of the large-scale motions amplitude is reached when the energy

gained from the mean flow balances the energy lost to the small scales.

I_.b Model II

Model I assumes that the large-scale and the smal]-scMe turbulent fluctuations play

a direct role in the momentum transport process in the mixing region. Therefore, in

Model II only the fluctuations at the large scale are included. This eliminates the need to

specify a model, equation (15), to describe the momentum exchanges due to the small-scale

fluctuations. Model II thus involves only one mode] constant for the energy dissipation

model in the kinetic energy equation for the large-scale turbulent fluctuations. It can

be seen from Figure 10 that the forces associated with the large-scale normal stresses

are apparently able to counter-balance the decelerating effects of the wave shear stress

gradients. Thus, a prediction of the development of the layer is possible considering only

the dynamics associated with the large-scale turbulent fluctuations in the layer.

12



The predictedmean velocity profilesare presentedin Figure 11. It shot's that the
meanflow canbesatisfactorilypredictedby modelingon]),the dominant large-scalestruc-
tures. Figure 12comparesthe calculatedaxial meanvelocity profiles using Models ] and
II. Note that the predicteddevelopmentof the mixing layer hasreachedequilibrium state
at both z = 6.19 using Model I and z = 7.26 using Model II. Thus; Figure 12 is comparing

the mean velocity profiles at the equilibrium state of a mixing layer using two different

turbulence closure schemes. The agreement between these predictions is more than satis-

factory. Both of the predicted mean velocity profiles deviate from Patel:s data near the

low speed side of the layer. However, as noted previously, the accuracy of the measured

data may be suspected in that region due to the rapid variations in the instantaneous flow

direction. This phenomenon, in fact, is predicted in the application of Model II] to the

turbulent mixing layer.

As is shown in Figure 13, the predicted shear stress distributions do not match the

total shear stress distributions measured by Patel (1973). However, as noted above: this

difference does not necessarily mean that the small-scale stresses should be included. It

must be remembered that the present model simulates the entire large-scale spectrum with

a single frequency wave that is locally most unstable. Tam and Chen (1979), in their local

model, included a broad range of instability waves and found good agreement with exper-

iments without the inclusion of contributions from the small scales. In fact, it is shown

here that the time average characteristics of a turbulent mixing layer can be predicted sat-

isfactorily using only the most unstable waves, provided that all the momentum transport

mechanisms associated with the wave are included.

The evolution of the large-scale amplitude using Model II follows a similar behavior

to that using Model I and is shown in Figure 14. Once again an equilibrium condition is

reached where the rate of energy transfer from the mean flow to the large-scale structures

balances the rate at which energy is lost by the structures to small scales for eventual

dissipation. The little kink near z = 6.0 is due to the fact that at this region there are

relatively large changes of marching step sizes required by the adaptive grid generation

scheme. Since the marching step sizes are selected based on the global variation of the

mean flow, this kink has little effect on the predictions of the riot, development.

Figure 15 gives the growth of the mixing layer in terms of momentum thickness, t_,

predicted by Model II. In the present analysis, the momentum thickness is defined as

2y_e = 9(1-.)dy (23)
d 2yl

8o is the initial momentum thickness and the straight line represents the rate of growth of

the layer: which is an average over experimental data at the equilibrium state of mixing

layers. In the earl)' stages of the development of the mixing layer, the large-scale structures

in the flow are relatively weak and momentum exchanges are mainly due to the effect of

molecular viscos]ty. The strengthening of the large-scale structures increases drastical}y

the mass and momentum exchanges across the layer and. consequent])', the width of the

mixing region. This reflects the same phenomenon predicted using Model I.
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Figure 16showsthe Strouhalnumber,Sty, of the large-scale structures based on the

local momentum thickness. That is,

f0 w0= --- _ _ (24)
U 27rU

where f and w denote the frequency and the angular frequency. After the mixing layer

reaches an equilibrium state, the Strouhal numbers of the large-scale distur- bances ap-

proach a constant (_, 0.012). The Strouhal number of the large-scale structures, based on

the average passage frequency and the local momentum thickness, in an unforced, initially

fully turbulent mixing layer is _0.024, Hussain and Zaman (1985). In a spatially devel-

oping mixing layer, unstable waves or large-scale structures are continuously amplified as

they propagate downstream. The amplification of the unstable waves continues until they

become neutral. Thus, a wave at its neutrally stable stage reaches maximum amplitude

and dominates over waves of other frequencies. Consequently, the detected average pas-

sage frequency of the large-scale structures is associated with that of the locally neutral

mode, which is about two times of that of the locally most unstable mode. The present

calculation, which predicts that the Strouhal numbers of the locally most unstable mode

reflects this phenomenon.

IV.c Model III

Model III simulates the time-dependent turbulent motion associated with the passage

of a train of large-scale turbulent structures. The large-scale turbulent structures are

represented by a superposition of hydrodynamic instability waves. As the flow develops

axially, these hydrodynamic waves become damped because of the growth of the shear

layer. Since it is assumed that energy associated with a given wave is removed immediately

after it becomes neutral, there is no need to obtain damped inviscid solutions by analytic

continuation in the complex plane, Tam and Morris (1980).

The initial wave amplitudes of this calculation are

Xoy - 10 -2, 3"= 1, .... 6 (25)

The initial mean velocity profiles and the boundary conditions are the same as those used in

the previous calculations. In the preliminary calculations, it was found that an abnormality

in the mean ve}ochy distributions appeared near the cr]tica} points of saturating waves.

Also, most of the shear layer growth occurred on the low speed side of the layer. This

gives a non-monotonic velocity distribution near the critica] layers of saturating waves and

another inflection point appears. Saturating waves thus have to be removed before they

become neutral during the axial marching. Wygnanski and Petersen (1987) suggested that

this abnormality ]s due to nonlinearity. Composite expansion techn}ques have been applied

to investigate the effect of critlca]-layer nonlinearity, for example; see Goldstein and Leib

(1988) and Goldstein and Hu]_gren (1988). Another approach to resolve this issue is to

include viscous effects: that is to solve the Orr-Sommerfeld equation. Since the present
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investigationis directedtoward developingsimpleturbulencemodels,insteadof including

other computationaliy expensive approaches, the effects of the critical point is accounted

for by incorporating a small amount of eddy viscosity in the analysis of the mean flow.

The additional mixing at the fine scale is diffusive and able to smooth out humps in the

flow. In the present calculation, the extra mixedness provided accounts for about 10% of

the amount of turbulent momentum exchange that is suggested by conventional models.

With this modification the mean velocity distributions predicted at several down-

stream stations are shown in Figure 17. There are six waves in the hierarchy in this

calculation. Since waves are removed successively during the axial marching, the number

of waves included depends on the distance the calculation is to be carried downstream.

There are some small differences between the calculated results and Patel's measurements.

It should be noted that Model Ill simulates the development of the mixing layer asso-

ciated with the realization of a single event, which is the passage of a train of well-defined

large-scale structures. In physical experiments, such as that reported in Patel (1973), ex-

ternal disturbances or noise from various sources ma.v modify the initial conditions of the

flow. which cause events that affect the subsequent development of the layer. Therefore,

the differences between predictions using Model III and experimental data will vanish if

these randomizing events are taken into account. On the other hand, it might be ex-

pected that Model III should resemble the behavior of that of an externally excited mixing

layer, in which the layer is excited at particular frequency and cleaner flow pictures can
be obseried.

Figure 18 shows the development of the wave amplitudes. The additional small-scale

mixing increases the initial growth of the layer so that the fundamental mode is removed

at a lower amplitude than its subharmonics before its amplitude reaches equilibrium level.

The axial width of the }ayer is shown in Figure 19 and is compared with the prediction

using Model I. As was noted earlier, the presence of this stepwise evo}ution is characteristic

of excited flows and would be smoothed out if many waves with slightly different ampliT, udes

and frequencies were included. However, the global evolution of the width of the layer

agrees closely with that using Model I. Figure 20 compares the predicted evolution of

the momentum thickness of the shear layer, using Model II and Model III. Note that

the initial momentum thickness for the cases using Model I, II and III are the same.

The only differences are the values of the initial amplitudes. The case using ModeI III

assumes stronger initial large-scale structures than that used in Model II. As the flow

develops downstream, Model III predicts a greater amount of large-scale mixing of mass

and momentum than Model II. Consequently. the predicted growth of the mixing region

using Model III is faster than that using Model II. However, the predicted rates of growth,

dO/dz, using these two models are virtually the same. Since both of these models provide

predictions by modeling the intrinsic characteristic structures in the free mixing layer, it

is not surprising to find some family resemblance between the results predicted by these

three mode}s.

Figure 21 shows the unsteady velocity profiles in the axial direction at x/_o=30 before,

during and after the passage of a large-scale structure. At this location, the dominating

mode has the period of approximately 4. Reverse flow occurs at the low speed side of
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the layer during the passingof a large-scalestructure. At the sametime, the streamwise
velocity increasesinstantaneouslyat the high speedsideof the layer. Theseinstantaneous
ve]oc}ty variat}ons show the passageof a c]oc]_-wise rotating structure. Note that the

instantaneous reverse flow at the low speed side of the layer gives rise to instantaneous

changes of flow angles and makes velocity measurements extremely difficult in that region.

The visualization of the flow can also be assisted by streakline plots such as those shown in

Figure 22. The roll-up of vortices into larger vortex-like structures can be observed clearly.

The initial roll-up is dominated by the fundamental mode. As time progresses, the in}tial

structures convect downstream and roll around each other. These regions of concentrated

vorticity then form a single large structure. As the passive particles travel downstream,

their motion becomes dominated by lower subharmonics. Vortex-like structures of increas-

ing scale are formed. Subsequently, the rolling process between two adjacent structures

repeats as the flow deve}ops further downstream. Careful examination of the figures also

shows how the structures are convecting downstream as they form and roll. Large tongues

of unmixed fluid are swept across the layer and reach the opposite side of the layer as ob-

served by Brown and Roshko (1974). The engulfed fluid elements from the two sides of the

layer mix and are drawn into the leading and trailing vortices when passing through the

high-strain braid region between the vortices. This provides the environment for further

fine-scale mixing.

Figure 23 and Figure 24 show the flow pictures frozen at t = 6.5 and 5.0, respectively.

In these cases, harmonic waves in the wave hierarchy are in phase. The distribution of

momentum thickness in the streamwise direction at t = 6.5 is shown in Figure 23.b. At

t = 6.5, three full-grown large-sca}e structures centered at roughly, x/5o = :10, 18 and 40

can be observed. These large-scale structures are essentially vortices rotating in a dock-

wise manner. The mean and transient velocity profiles at z/5o=18 and 40 are shown

in Figure 23.c. The turbulent large-scale structures, which appear as clock-wise rotating

vortices, contribute velocity excess/deficit on the high/low speed side of the layer, relative

to their respective mean velocity distributions. Therefore, the instantaneous momentum

thickness of the flow in the region occupied by the fully-grown large-scale structures is

smaller than the mean value. This can be dearly seen in Figure 22.b. Note that for a

vortex sheet with a velocity profile given by

{1, > 0 (26)g = 0 y_<0,

the momentum thickness is zero. The mean (or instantaneous) momentum thickness at

any ax]a} station is obtained by substituting _ (or <: _ > ) into the g in equation (26). In

Figure 23.b. three dips can be observed clearly in the instantaneous momentum thickness

distribution. The positions of the dips correspond to the centers of the three fully-grown

structures. On the other hand: the instantaneous velocity profile at x/6o = 27 shows

velocity deficit/excess on the high/low speed side of the layer. At _ = 6.5, the high-

strain braid region between two structures passes through z/_o = 27. Therefore it is not

surprising to observe that the instantaneous momentum thickness is greater than the mean

momentum thickness at z/6o = 27. If there is a very strong velocity excess/deficit on the
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high/low speedside,ashearflowmayhavenegativemomentumthickness. The case shown

in Figure 24 reflects the situation. At t = 5, two vortices are merging at z/6o = 30. The

two merging vortices deform as they roll around each other. The instantaneous velocity

profile at the center of the merging is shown in Figure 24.c. ]t shows clearly the footprints

of these two deformed structures. This results in high velocity excess/deficit on the high/

low speed side of the layer. The local instantaneous momentum thickness becomes negative

and reaches a minimum at z/6o=30 before picking back up downstream. The following

increase in momentum thickness in the axial direction is the effect of further mixing of the

low and high speed flu]& Similar to the case at t = 6.5 and z/6o=27, the instantaneous

momentum thickness at x/60=30 and 50 are much higher than the respect}re mean values.

As mentioned earlier in the analysis, harmonic waves have to be cut off before they saturate

to avoid the problem associated with nonlinearity. Therefore, the rather abrupt variations

in the instantaneous momentum thickness distributions in Figure 23.b and Figure 24.b

can be observed at the axial locations where the waves are cut off. The second and the

third harmonics are cut off at X/6o = 18 and 30, respective})'. The dotted lines in Figure

23.b and 24.b show the projected distributions of the instantaneous momentum thickness

should the harmonic waves be carried through their neutral points in the calculations.

%T. SUMMARY

Three models based on a quasi-linear theory, that describes the dynamics of the domi-

nant large-scale structures in a free mixing layer have been presented. The closure schemes

incorporating the models are able predict the development of the turbulent free mixing

layer accurately, even though they contain some assumptions and simplifications. The

predicted averaged properties of the incompressible turbulent mixing layer agree well with

experiments. The transient turbulent motions at the large scale in the layer mapped out

using Model III possess man), features that are apparent in flow visualization experiments,

such as the convective nature of the large-scale structures, the large--scale transport of un-

mixed fluid elements and the roll-up of vortices. The models involve less empiricism than

most conventional models. Since large-scale coherent structures appear also in shear flows

of other geometries, the closure schemes presented here should be applicable to those cases

as well. It is hoped that these models_ which originate from observed physical phenomene.,

will provide efficient tools to model other free shear flows.
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Figure 2.1. Sketch of a free mixing layer.
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Roy S. Baty and P. J. Morris





ABSTRACT

Conforma]coordinatetransformationsareusedto map simple computational

domainsonto arbitrary simply and doublyconnectedregionswith smooth bound-

aries. Efficient schemesinvolving the solution of the inverseboundary correspon-

dencefunction problemsassociatedwith mappingthe unit disc or circular annulus

onto simply or doubly connecteddomainsrespectivelyareemployed. The numer-

ical implementation of these schemes is emphasized. Examples are generated for

regions with elliptic inner and outer boundaries. Additional examples are used to

demonstrate the accuracy and convergence of the schemes and their practical lim-

itations. The techniques are found to converge well if holomorphic functions are

used to describe the boundaries. The use of preconditioning maps is also discussed.
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1.0 INTRODUCTION

Many problems of practical interest in engineering involve the solution of dif-

ferential problemz in complex geometries. In such problems the boundaries may

not conform to coordinate lines in an orthogonal coordinate system. Alternatively,

the coefficients in the differential problem may not be constant along coordinate

lines making a separable form of solution impossible. Several numerical techniques

are available to overcome these difficulties. Finite element or boundary element

methods may be used. If a finite difference or spectral approximation is sought the

physical domain must be transformed into a simple computational domain. Once

again, several alternative approaches exist. The use of conformal maps is very

desirable. Such maps simplify the governing differential equations in the mapped

regions since the metric tensors are diagonal. However, these maps are difficult,

and sometimes inefficient, to generate computationally and often lead to ill-posed

numerical problems.

Recently, Wegmann [1,2] developed a very efficient scheme to determine the

conformal map from a standard computational domain onto an arbitrary simply

connected region in the plane. This scheme solves the inverse boundary correspon-

dence problem associated with mapping the unit disc onto a region with a smooth

boundary. Wegmann [3} also extended this technique to determine the boundary

values for the transformation mapping the circular annulus onto a doubly connected

region with smooth boundaries. In both cases, the entire conformal map may be

generated from the solution of the boundary correspondance problem using the

Cauchy Integral Theorem.

The present study of conformal maps is motivated by the authors' interest in

the spatial stability of jets of arbitrary cross section. The characteristics of the



instability waves play an important role in the jet mixing process and the radiation

of noise by high speed jets. The growth of these instabilities is governed by the

linearized, inviscid equations of motion. These may be simplified to a single linear,

elliptic, second- order partial differential equation for the instability wave pressure.

In general, the coefficients in this equation vary arbitrarily in the cross section

plane and no separable solutions may be found. Thus a numerical solution must be

obtained in the regions of non- constant coefficients.

There are two characteristic regions in a jet flow. The first is the annular mixing

region surrounding the potential core of the jet and the second is the developed jet

flow region downstream of the potential core. Once a map is generated for either of

these doubly or simply connected regions onto a simple computational domain, the

homogeneous boundary value problem for the instability wave pressure fluctuations

may be solved. Such a solution, using a hybrid pseudospectra] and finite difference

algorithm is described by Baty and Morris [4].

In this paper we apply Wegmann's techniques to compute the conformal co-

ordinate transformations for simply and doubly connected regions. Examples are

given for regions appropriate for the study of jets issuing from elliptic nozzles. Sim-

ply and doubly connected elliptic regions of aspect ratios 2 and 3 are considered.

The conformaJ maps for such regions are difficult to compute and provide a good

numerical test case. The numerical implementation of the mapping techniques is

emphasized. The elliptic and additional maps are generated to establish the con-

vergence and accuracy of the techniques. In addition, the practical limitations of

these techniques and some methods to overcome these difficulties are presented.

In the next section some preliminary mathematics is developed. Sections 3

and 4 describe the simply and doubly connected Wegmann methods. Details of the



numerical implementationof the techniquesandseveral examples are given. Some

practical limitations of the techniques and a discussion of convergence and efficiency

is given in Section 5.

2.0 PRELIMINARY MATHEMATICS

The regions of interest in the present study are the annular and disc-like regions.

Therefore, the canonical regions are the unit annulus (with some inner radius 0 <

# < 1 ) and the unit disc. Let C denote either canonical region, let P denote a

given physical region, and let W denote the conformal mapping satisfying:

W:C--4 ? 2.1

Consider a rectangular region, _, defined by

:= [Cy_,_2) _ R21a < y' < b,0 < y_ < c] 2.2

where a, b, and c are finite real numbers and where c > 0. The exponential mapping,

exp(iz), then carries _ onto an annular region, 6:

exp : _ _ C 2.3

Composing the mappings given by 2.1 and 2.3 yields a map from a rectangular

domain onto the region of interest:

Woexp:_--4 P 2.4

The exponential map carries an infinite strip onto the unit disc. Thus, any finite

rectangle will be carried onto an annulus.

The following discussion considers the analysis required for simply connected

geometries. The analysis needed for the doubly connected geometries may be gen-

eralized from this case.



Let P be the unit disc. Let d_be a simply connectedregion with a smooth

closedboundary parameterizedby,

z(t) on 0<t<_. - 2.5

Here, z is assumed to be a smooth regular curve. By the Riemann mapping theorem

there exists a unique function g such that,

g : P --.-; _. 2.6

It should be noted that the uniqueness of g follows from the imposition of normal-

izing conditions, for example see [5]. For simply connected regions the following

conditions are imposed:

g(o)= o, 9'(o)> o. 2.7

The goal of the simply connected Wegmann method is to determine the map g on

the boundary of the unit disc. This requires determining the image of a point on

the unit circle. Since g(P) = _, it follows that a point on the unit circle is carried

to a point on the boundary of _. Now, since the boundaries of P and _ are known

smooth functions, only the angle of a point on the boundary of P or _" needs to be

known in order to determine its location on the boundary. Therefore, if the angle

8 of a point is given, the problem becomes to determine the angle r(8) of its image

satisfying:

9(e") = _(_(8)) 2.8

Any real function r(8) such that,

2.9



is 2_r periodic and 2.8 is satisfied is called an inverse boundary correspondence

function, IBCF.

The Wegmann method solves for the function, r, so that equations 2.8-9 are

satisfied. The technique assumes that a good guess, f, for r is known and then

computes a small correction factor, rl, such that:

r = ¢ + _ 2.10

To simplify the construction of r, an approximation of r/is calculated. Substitution

of 2.10 into 2.8 and linearization of the result yields:

= + 2.11

where the prime denotes differentiation with respect to r. Equation 2.11 can then

be recast as a function-theoretic boundary value problem allowing the explicit de-

termination of rl. In the numerical solution of the IBCF, equation 2.11 is solved

]terative]y becoming:

'°) =

Therefore, at each step of the iteration the function _- as well as the boundary of

the smooth domain /_ are approximated. Once the IBCF, r, has been computed,

2.8 may be used to construct the function, g, on the interior of the unit disc from

the Cauchy Integral Theorem.

3.0 THE SIMPLY CONNECTED WEGMANN METHOD

Wegmann's technique solves the inverse boundary correspondence problem,

introduced in the last section, by iterative computation of the correction factor, r2,

defined by 2.10. This method generates simultaneously two sequences of functions.



The first sequence of functions, g,_ is analytic on the interior of the unit disc and

satisfies the normalization conditions 2.7. The second sequence of functions, zk,

maps continuously the unit circle onto the boundary of the physical region. If these

sequences converge, they may be used to compute the boundary correspondence

function, r.

The basic strategy of the Wegmann method is to construct the real part of the

desired conformal map, g,, on the boundary of the physical regions and then use a

conjugate integral operator, K, to determine the imaginary part. Here K is defined

by the equation,

= --P v  (t)cot( )dr 3.11

where P.V. stands for the principal value of the integral.

Equation 3.1 defines a general operator which generates the conjugate periodic

function, v, of a real 2r periodic function, u. Furthermore, the operator K is easy

to evaluate numerically. If the functions on which this operator acts are expressed

as a Fourier series, K simply multiplies the coefficients of the Fourier series by :t:i

or by 0. The mathematical and numerical details are given in Henrici [6].

Wegmann's method [3], constructs the real part of the conformal map by re-

casting 2.12 as a Riemann-Hilbert problem given by:

e ) =

This Riemann-Hilbert problem has a unique solution, Henrici 15]. Furthermore,

the solution of the Riemann-Hilbert problem may be used iteratively to compute
x

the desired conformal map on the boundary of the physical region. The k + 1-th

approximation of the map is given by :

_,(e) = z(n(,,(e))-e) 3.3

9



= _Iz(r_(e))exp(_(e) - i¢(r_(O)))]

where ¢ is the tangent angle of the curve defined by:

3.4

3.5

z'(_) = Iz'(_)lexp(i¢(_)) 3.6

Furthermore, the constant, Xk, is defined by:

Xk = _kcot&k 3.7

where,

11o"_k = E q_(_)d¢,

and

1 /o 2"_ = _ CeCal(e))- _)e_.

The constant Xk insures that the normalizing conditions 2.7 are satisfied.

3.8

3.9

The update of the correction factor, _?k, is then determined by 2.12 and 3.5,

which yield,

\z,(_,(0))] Iz,(_ (0))lexp(_,(0))
3.10

Then using 3.8, the next iteration of the inverse boundary correspondence function

_+,(e) = _(e)+_(e). 3._

becomes:

Equations 3.3-11 constitute the simply connected Wegmann method.

10



3.1: Numericalimplementationof the Wegmannmethod

The Wegmannmethod hasbeenimplementednumerically using FFT's to ap-

proximate the Fourierseriesand the necessaryperiodic functions and their conju-

gate integral operators. The FFT's havebeencomputedusing the standard IMSL

subroutinesDFFTRF and DFFTRB.

The present calculations have been performedon a Vax 11/780, in double

precision,usingthe following steps:

[1] An initial guess for the inverse boundary correspondence function, to, is made.

[21 The boundary functions z, z' and the argument of z', ¢, as defined by 3.6 are

computed at the values of rk.

[3] The integral equation 3.3 is then computed. This is accomplished using an FFT

to approximate the integrand of 3.3. Then the conjugate integral operator is

applied. Finally an inverse FFT is applied to obtain a discrete representation

of the function wk.

[4] Using the results of steps 2 and 3, qk is then computed from 3.4.

[5] The conjugate integral operator is then applied to qk .This is accomplished using

an FFT and its inverse is also obtained as outlined in step 3.

[6] The normalization constant, defined by 3.7, is then computed, using 3.8 and

3.9.

I7} The final step is to use the results of steps 2 through 6 to compute r/k, given

by 3.10, and then update the inverse boundary correspondence function, 3.11.

If a good initial guess is provided, the Wegmann method converges quadrati-

cally. For the present application of grid generation, the scheme requires typically

5 iterations. Therefore, the coupling of the FFT's with the quadratic convergence

11



rate makesthis schemevery efficient.

3.2: Validation of the simply connectedWegmannmethod

The code has beenvalidated by computing the inverseboundary correspon-

dencefunction for an invertedellipsedefinedby:

z(s) = Cl-(1-p=)cos 2s) texpC/s) 3.12

for 0 < p < 1. In this case the boundary correspondence function may be deter-

mined exactly. From Gaier [6], the solution of the inverse boundary correspondence

function is given by:

tan(8) = ptanCr) 3.13

Table I shows the maximum value of the absolute errors for the inverse boundary

correspondence function defined by setting p = 0.6 in 3.12. Here, N and k represent

the number of points used to discretize the circle and the number of iterations

respectively. These error results have the characteristic properties of the results

found by Wegmann [1], for the inverted ellipse. Table I also illustrates the quadratic

convergence rate of the scheme.

The Wegmann scheme has also been used to compute the inverse boundary

correspondence functions for regions bounded by ellipses. The boundary curves

defining the ellipses are written in terms of holomorphic functions. These are given

in Section 5. The sensitivity of the scheme to the functional form of description of

the boundaries is also discussed in Section 5. Once the IBCF's are determined, the

conformal maps are computed using the Cauchy Integral Theorem, see Henrici [5],

given by:

fo _ g( e2''' )
dt 3.14

g(z) = 1-

12



Equation3.14isapproximatedby aseries,usinganFFT to compute the coefficients

of the series.The seriesis then evaluatedat the grid points in the computational

domainby applying the Homer summationtechnique:Burden and Faires17].

FiguresI and2showthegridsgeneratedusingthe Wegmannmethod for simply

connectedelliptic regionsof aspectratio 2 and3. Figure3showsthe computational

domainfor theseexamples.Recallthat this rectangleis mappedonto the elliptical

regionsby composingthe exponentialmapwith the Wegmannmap.

4.0 DOUBLY CONNECTED WEGMANN METHOD

The doubly connectedWegmannmethod [3] is a generalizationof the simply

connectedscheme. In this case, the canonical region for the conformal map is

the unit annulus,with interior radius #. This scheme requires the solution of two

inverse boundary correspondence problems computed simultaneously, one for each

boundary of the physical region. Furthermore, the value of the interior radius of

the canonical annulus must be determined.

Since the Wegmann method for annular regions is a generalization of the simply

connected method, the iterative steps are not outlined in the present study, but

may be found in reference [3]. It should be noted, however, that Wegmann tested

two versions of the scheme. These versions differ in the iterative method used to

compute the inner radius of the annulus,/_. All the numerical experiments presented

in this section are based on Wegmann's first scheme. The first method is applied

since its convergence properties have been justified rigorously, while there is less

mathematical justification for the convergence properties of the second scheme.

The doubly connected scheme has been implemented numerically using FFT's

to approximate the periodic functions and their corresponding conjugate integral

13



operators. As with the simply connectedmethod, the calculation is initiated by

providing a guess for the IBCF's, _.0, and 72.o. The subscripts 1 and 2 denote

the outer and inner inverse boundary correspondence functions respect3ve]y. With

good initial guesses for the IBCF's and the interior radius, the doubly connected

Wegmann method converges quadratically.

To validate the doubly connected Wegmann method, the inverse boundary

correspondence functions have been computed for the annular region defined by the

curves:

= expCi ), 41

and,

= A + Be×p(i ) 4.2

for 0 < A, B < 1. The conformal map carrying the unit annulus onto this region is

given by

jz+ e.
fCz) - 4.3

rnz + n

where the constants j, _, m, and n may be determined from the coordinates of the

center of the circles. Thus, the inverse boundary correspondence functions for this

example may be computed easily from 4.3.

Table 2 shows the maximum value of the absolute errors for the IBCF's defined

for the non- -concentric region for A = 0.2 and B = 0.5. These results are again sim-

ilar to the results of Wegmann 13] for this region. As in Table 1, N and k represent

the number of points used to discretize the boundaries and the number of iterations

respectively. The error results are presented in pairs: the first number corresponds

to the error on the outer boundary, while the second number corresponds to the

error on the inner boundary.

14



The Wegmannmethod hasalsobeenappliedto compute the boundary corre-

spondencefunctionsfor annularelliptic regions. The functions used to define the

boundariesof the elliptic regionsaregivenin Section5. Oncethe IBCF's arecom-

puted, the conformalmapsarecomputedusingthe CauchyIntegral Theorem. For

the annular domains,two Cauchyintegralsareneededto approximate the confor-

mal map on the interior of the annulus. Oneintegral is definedon eachboundary

of the canonicalannulus. Theseintegralsare approximatedusing series,comput-

ing the coefficientswith FFT's. The Hornet summationschemeis then applied to

evaluatethe truncated seriesat the grid points in the computational domain.

Figure 4 showsanannularelliptic regionwith outer boundary of aspectratio 2.

The correspondingregion in the computational domain is rectangular with a = 0,

b = 7r/2, and c = 0.42, in 2.2. Recall that the coni'orma] map from the rectangular

computational domain onto the elliptic region is obtained by composing the expo-

nential map with the Wegmann map. Figure 5 shows a thin annular elliptic region

with outer boundary of aspect ratio 3. In this case a = 0, b -- 7r/2, and c = 0.09 in

2.2.

5.0 PRACTICAL LIMITATIONS OF THE WEGMANN METHOD

In the preceding sections, the Wegmann methods were shown to be extremely

powerful techniques to generate the conformal coordinate transformations for simply

and doubly connected regions. Using FFT's and the Homer summation scheme,

the overall Wegmann grid generation method requires O(N log N) computations,

where N is the number of discretization points on the boundary of the computational

domain. (The operation bound is based on the assumption that the total number of

grid points is less than the value of N.) This order of computations is an improvement

over standard integral techniques which typically require 0 (N 3) computations. The

15



standard integral approachis to compute the inverse coordinate map, and then

approximate the desired map using an interpolative process. As an example of an

integral approach for the inverse map, see Symm [8].

The Wegmann technique is also more efficient than the numerical method de-

veloped by Fornberg, [9], [10], and [11]. For simply connected domains the Wed-

mann scheme is approximately seven times more efficient than the Fornberg scheme

(Wegmann [11]). For doubly connected domains, the Wegmann method is even

more efficient than this, since it converges quadratically while the Fornberg method

converges linearly. It may be the case that the Fornberg method is easier to code

than the Wegmann method. It may also be the case that the Fornberg method is

easier to apply to an arbitrary region with a smooth boundary, since the Wegmann

method is sensitive to the initial guess for the inverse boundary correspondence

function.

Some limitations of the Wegmann method determined during the numerical

experiments will now be discussed. A basic limitation of the Wegmann method is

in the choice of functions used to describe the boundaries of physical regions. In

general, Wegmann [1, 2, 3] showed that a function with Hblder continuous deriva-

tives may be used to generate the inverse boundary correspondence function needed

to construct the desired conformal mapping. However, if simple smooth polar ex-

pressions of the form:

z(0) = p(e) exp(ie), 5.1

are used to represent the boundary of the physical region, the Wegmann method

does not necessarily converge. The difficulty is that, although the first three deriva-

tives of z are Hblder continuous, they may become large. This forces the initial

guess for the Wegmann technique to be very good and, in general, a very good

16



initialguess isnot available.

The polar form ofthe boundary functionshas been implemented forsimply and

doubly connected ellipticregions.Several initialguesses based on linearand non-

linearfunctionsfor the inverseboundary correspondence function have been tried

in conjunction with the polar representation.In allcases the Wegmann method

failsto converge.

In order for the Wegmann method to converge without a good initialguess,

holomorphic (complex, analytic) functions are used to describe the boundaries of

the physical region. In the case of the simply and doubly connected elliptic regions

the map:

asin(-0 + ip) 5.2

has been used to represent the boundaries of the regions. Here a and p are real

numbers and the variable 8 is defined in the interval I0, 2_r]. Figure 6 shows the

first derivative with respect to 8 of the holomorphic and polar representations for an

aspect ratio 2 ellipse. Clearly, the derivative of the holomorphic function does not

fluctuate as much as the derivative of the polar representation. It should be noted

that the holomorphic representation must satisfy the Cauchy-Riemann equations

whereas the polar representation does not.

In contrast to the polar form, the holomorphic form with an initial guess of:

_(8) = 8, 5.3

almost always converges. For the simply connected method, regions with aspect

ratio up to 4 have been run successfully.

tn the case of the doubly connected method, an initial guess for the inner

radius, #, of the canonical annulus is also required. When a good guess for /_ is

17



giventhe doubly connectedWegmannmethodworksvery well. However,for a case

where the outer ellipsehad anaspectratio of 2 and the inner ellipse had an aspect

ratio of 10 the scheme failed to converge.

In an attempt to improve the performance of the Wegmann m¢ _hod in such

cases an intermediate conforma] mapping, J, is introduced to preconditi,_n the

physical space. Let P denote the doubly connected physical region. Let I denote

the image of P under the map J. The goal is to use the Wegmann method to

construct the conformal map from a canonical annular region, C, onto 2", and then

apply the inverse map J- _ to obtain the desired conformal map from the canonical

domain onto the physical region. This preconditioning has been used successfully.

For the present example, the preconditioning map is the inverse Joukowski map

defined by

J(z) = s.4
2

where "/is a function of the dimensions of the inner elliptic boundary. The inverse

Joukowski map carries the inner elliptic boundary onto a circle. The outer ellipse is

mapped onto a curve which is closer to a circle than the initial outer curve. Figure 7

shows the image of the annular region under the inverse Joukowski map.

The second limitation of the Wegmann method involves the number of dis-

cretization points needed for regions bounded by high aspect ratio curves. The

problem of determining a conformal mapping numerically generally leads to an ill-

posed computation. One cause of this is the local angle preservation of conformal

maps. In simply connected regions bounded by high aspect ratio curves, the local

orthogonatity forces evenly spaced discretization points in the computational do-

main to be crowded together in the given region. The crowding phenomenon causes

the ill-posed numerical properties seen in computing the conformal maps.

18



Figures8 and 9 show the crowding of the boundary discretization points for

the simply connected elliptic regions of aspect ratio 2 and 3, respectively. Clearly,

as the aspect ratio of the boundary curve for a simply connected domain increases,

the crowding phenomenon becomes more severe.

The Wegmann method works well in determining the solution of the boundary

correspondence problem for simply connected elliptic regions. However, as the

aspect ratio increases, the number of terms needed in the series approximation of

the desired conformal map also increases. Table 3 shows the maximum error found

on the boundaries of the ellipses as a function of aspect ratio, and the number of

terms used in the series approximation. The error shown in Table 3 is defined by

evaluating the series approximation of the conformal map at points on the boundary

of the canonical domain and substituting the result into the expression:

where F(x, y) is defined by,

Error = IFC ,y)-11, s.5

x2 y2
F(z,y) := - +- . 5.6

b

Table 3 shows that a large number of terms are required in the approximating series

as the aspect ratio of the domain increases. Therefore, these error results suggest

that the Wegmann grid generation technique is practical to apply to simply con-

nected elliptic regions of aspect ratio less than 4. For elliptic regions of aspect ratio

greater than 4, it may be possible to apply preconditioning to reduce the number of

terms required in the approximating series. However, this form of preconditioning

has not been attempted in the present study.

The severe crowding phenomenon exhibited by the conformal maps for simply

connected regions has not been observed for the doubly connected regions. The
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elliptic annular regionsfor which the Wegmannmethodhasbeentestedshow little

or no crowding effects. Figure 10 showsthe imageof the discretized points for

a typical annular elliptic region. The lack of crowdingsuggeststhat the annular

elliptic regionsmay be approximatedwith fewerterms than required by a simply

connectedregionof the sameouter aspectratio.

6.0 SUMMARY

This paper has presented numerical experiments for the implementation of the

mapping techniques of Wegmann. Through the use o[ FFT's this method requires

0 (N log N) operations. In addition, the technique is quadratically convergent. Sev-

eral examp]es for both simply and doubly connected regions have been examined.

In particular elliptic regions have been considered. The Wegmann techniques have

been shown to work for high aspect ratio elliptic regions. However, the main prac-

tical limitation of these methods for both simply and doubly connected regions has

been found experimentally to be the functional form used to represent the bound-

aries. For general regions, the Wegmann method works well if the boundaries are

represented by holomorphic functions. However, the methods may not converge

at all if a general smooth polar representation is used without a very good initial

guess.

In spite of these limitations the Wegmann method is more efficient than other

conformal mapping techniques. A further application of this scheme is in the de-

velopment of conformal maps for single and double elements airfoils. For this case

it is necessary to compute the maps on the exterior of a domain. A comparison

between the Wegmann technique and other existing methods for this problem is

being undertaken by the authors.
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k

2.6(-2)
2 2.7(-4)
3 8.o(-s)
4 g.4(-9)
5 1.6(-g)

}V = 64 N = 128 )V - 256 .N -- 512

2.6(-2)
2.s(-4)
3.2(-s)
6.o(-14)
I.o(-14)

2.6(-2)
2.8(-4)
3.2(-8)
4.5(-is)
8.s(-Is)

2.6(-2)
2.8(-4)
3.3(4)
3.s(-ls)
6.s(-ls)

Table 1: Error results for the inverse boundary correspondance function of the inverted

ellipse based on the simply connected Wegmann scheme.

k

1

2

3

4

5

A 7=64 N = 128 N= 256 N = 512

2.2(-i1, 1.8(-1) 2.{(-1), 1.8(-11

1.4(-2),G.9(-3)
_.3(-5),4.1(-s)
_.z(-9), 2.s(-7)
1.4(-9),3.4(-7)

2.2(-1),1.8(-1)
1.4(-2),6.9(-3)
S.4(-S),4.1(-5)
2.1(-9),2.6(-7)
1.4(-g),3.6(-V)

Z.4(-2),G.9(-3)
S.4(-5),4.1(-S)
2.2(-9),2.6(-7)
1.4(-9),3.6(-7)

2.2(-_), 1.S(-1)
1.4(-2),6.0(4)
8.4(-5), 4.1(-5)
2.2(-9), 2.G(-v)
1.4(-9),3.6(-7)

Table 2: Error results for the boundary correspondance functions of the non-concentric

annular region based on the doubly connected Wegmann scheme.

A7 AR = 2 AR = 3 AR = 4

i.6s(-1)]6

,?,2

64

128

256

512

1024

2048

3._2(-2)
4.4g(-3)
1.62(-4)
i.g5(-7)
1.3o(-z2)

NC
NC

NC

NC

2.21(-1)

4.68(-2)
7.31(-3)
_.o6(-3)
4.81(-s)

NC

NC

NC

NC

NC

l.s1(-1)
_._o(-_)
5.6o(-2)

Table 3: Maximum error found on the boundaries of simply connected regions of aspect

ratio AR as a function of the number of terms in the series approximation. NC

denotes not computed.
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Figure Captions

Figure 1. An example grid for a simply connected region bounded by an aspect

ratio 2 ellipse.

Figure 2. An example grid for a simply connected region bounded by an aspect

ratio 3 ellipse.

Figure 3. The computational space for the Wegmann maps for the aspect ratio 2

and 3 ellipses.

Figure 4. An example grid for a doubly connected region with an outer boundary

defined by an aspect ratio 2 ellipse.

Figure 5. An example grid for a doubly connected thin region with an outer bound-

ary defined by an aspect ratio 3 ellipse.

Figure 6. Comparison of the derivatives of the boundary representations. The

holomorphic case is denoted by the dot-line curve. The polar case is denoted by

the dotted curve.

Figure

ratio 2

J map.

7. The image of an annular region with an elliptic outer boundary of aspect

and an elliptic inner boundary with aspect ratio 10, under the action of the

Figure 8. Plot of the IBCF for the aspect ratio 2 ellipse with N = 64.

Figure 9. Plot of the IBCF for the aspect ratio 3 ellipse with N = 64.

Figure 10. Plot of the IBCF for the ellipses of aspect ratio 2 and 3 with N = 64.
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Chapter 5

Instability of Jets of Arbitrary Geometry

Roy S. Baty and P. J. Morris





INSTABILITY OF JETS OF ARBITRARY GEOIV_ETRY

Roy S. Baty t and Philip 5. Morro"

T_¢ Pe_b_yi_an__ S{_s U_|_srsi{_t g_r_t_ Par_j PA 1680£

A.BSTR.ACT

This paper describes _ calculation technique for de-

termining the stability of jets of arbitraxy crou section.

In paxticulax, elliptic and rectangular jets axe consid-

ered. The numerical procedure involves both a con-

formal transformation between the computational do-

main and the physical plane and a solution of the trans-

formed stabilityequation in the computational domain.

Modern, ef_cient,conforrnaJmappings axe used for both

simply and doubly connected domains. The numerical

soJution b b_ed on a finite di_erence/pseudospectr_l

discretizationof the stabilityequation. The technique

/s verified by comparison with previous calculations for

cb'culaz and e_ptic jets.C_dculations axe performed for

the stability of elliptic and rectangu}ax )eta of _pect

ratio 2. Growth rates, phase velocities,and pressure

eigenfunctions axe calculated.

i. INTRODUCTION

Tl_is study is motivated by the authors' inCerest in

turbulent mixing in free sbeax flows. ]t is now generxlJy

acknowledged that the mixing process is dominated by

the dynamics of large scale coherent structures. In ad-

dition, the local properties of these structures may be

modeled by a Linearised analysis. This has been demon-

strated in the experiments mad analysis of excited free

shear layers and jets by Gxster, Kit and Wygnanski x

and Petersen and S_met:. Tam and Morri# _'_ made uJe

of instabilitywave models of the large scale structures to

predict the noise radiation from supersonic shear layers

and the development of excited jets. In addition, Liou s

and Morris and Giridhara.u_ have developed Reynolds

stress closure schemes in which the unknown turbulent

stresses are described by solutions of the local stability

equation.

The present paper is concerned with the instabiJ-

ity of jets of arbitrary cross sections. Thi_ analysis b
an essentiaJ component in the extension of some of the

analyses of turbulent flows described above to more com-

plex geometries. Non-circular jets have been observed

NASA Graduate Student Researcher, Depaxt-

ment of Aerospace Engineering, Student Member, AIAA

* Professor, Depa._ment of Aerospace Eng/neering,
Member AIAA.

to have enhanced mi.x_g properties over circular jets.

This m_es their use attr_tive as injectors in combus-

torn. Sch_ow et al_ demonstrated this improved mixing

using xn ellipticaljet in a dump combustor. Rectan-

gu|ax jetshave _ppllcations in th.rust-vectoring/thrust-

reversingengine nossles for future fighteraircraft.

The stabilityof ellipticjets has been studied by

Crighton 4 and Morris _. In the former c_e a vortex

sheet representation of the jet _ow was used. In the

latter case more real_hstic, finite thickne_, sbeax layers

were considered where the analytic description of the

mean flow enabled separable solutions of the stability

equation to be found in elliptic cyJindricaJ coordinates.

Koshigoe a_d Tubis x°'ll used both a finite element and

finite difference approach to consider the stability of jets

of elliptic and triangular cross sections.

In the present paper we describe efficient algo-

rithms to compute the stability of non--circulax jets.

These techniques are applied to eLLiptic and rectangu-

lax jets. These results axe a paxti_/summaxy of a doc-

toraJ di_ertation o[ one of the authors (RSB) 1_. l_
the next section the numerical methods axe described.

This involves a con.formal mapping technique for aim.

ply and donb]y connected domain and a hybrid fini_e-

difference/pseudospectra3 solution of the stability equa-

tion. The stabilitycharacteristics of ellipticand rect-

angular jets axe then given in the form of the variation

o.f the growth rates and pha_e velocities with instability

wave frequency and eigenlunctions for the most unstable

modeJt.

2.0 ANALYSIS AND COMPUTATIONS

A jet /_ow is considered issuing from a nozzle of

axbitrary crc_ section. The governing equation is giver

in Caxtesian coordinates, {z, y, z). The _ of the jet is

xl.ignedwith the z direction and the axial mean velocity

isdenoted by W(z, y). The mean velocity components in

the z _nd y directions axe neglected. This is the paxxllel

flow approximation of hydrodynamic stability. If the

paxxnel flow a_umption is not applied and the effectsof

flow divergence axe considered, a problem results which

requiz_ a multiple---stainsanalysis. These e_ects are not

comsidered in the present study.

A lineax, eRiptic, paxtia} differenti_ equation for

the pressure is obtained by taking the divergence of the



momentum equation and using the equation of continu-

ity. The resulting equation is linearised about the mesa

flow. The velocity fluctuations are eliminated in favor of

the pressure fluctuation using the Knea.,_ed momentum

equations. If the pressure fluctuation is written in the

form:

p(x,y,z,t) = {2.1)

where,

"7 = _Z -- Wt,

and a is the axial wavenumber and w is the instability

wave frequency, then the equation for _ may be written

2a
(4 - a2)_ + _VW-V_ = 0 {2.2)

tO -- _W

Eqn. {2.2} is the Rayleigh equation governing the anvil-

cad, incompressible, spatiaJ stability of jets of arbitrary

cross section. In order to determine the preuure 16, in

eqn. (2.2), boundary conditions must be added. In this

case, _ satisfies:

"-"+oo (2.3)

and

_6 is finite as lxJ--* 0 (2.4)

The computational goal in solving the stability problem

defined by eqns. (2.2)-(2.4) is to determine the complex

wavenumber spectrum for a given frequency, w. Several

difficulties arise in computing the wavenumbers or eigen-

values a._ciated with the Rayleigh problem. Firstly,

the wavenumber, a, appears nonlinearly in 12.2). This

nonlinearity prevents the direct use of standard matrix

eigenvalue calculation schemes. Secondly, if the stability

• n•lysi_ is used to model turbulent mixing in jet flows,

the stability problem must be solved at a large number of

cross sections in a given jet flow. Therefore, any scheme

developed must be comput•tionMly very efficient.

2.1 The Generalised Rayleigh Equation

To con_ider jets of arbitrary geometry, con.formal

mappings axe used to map standard computational do-

mains onto ten, tic jet flow cro_ sections. Coaforrnal

mapping is analytically • very desirable technique, since

these maps simpl£fy the governing differential equation

by generating a diagonal metric tensor. Therefore, con-

formal maps are applied to simplify the Rayleigh prob-

lem for • jet of arbitrary geometry.

Recently, very efficientschemes have been devel-

oped to determine the con.formal maps from standard

computational doma_ins onto arbitrary regions in the

plane. Wegmann 13.1_.Isproposed a scheme to compute

the con.formal maps from canonical domains onto simply

and doubly connected region, with smooth boundaxies.

This technique h_ been applied to determine the coor-

dinate re•l:4needed for a realiJticellipticjet flow cro_

_ction. For polygonal regions, Trefethen 16'17h_ devel.

oped an efficient_oftwaxe pa_:kage,SCPACK, to deter-

mine the conformal map and itsinverse from the interior

of • polygon onto the unit diJc. SCPACK has been ap-

plied to determine the coa/ormal maps needed in the

study of • rectangular jet flow cross section. The details

of the conformal grid generation techniques are given by

Baty z2. To apply conformal maps, the Rayleigh problem

must be recast in general conformal coordinates. Let

Cartesian coordinates be denoted by (z l, z_), and let

the computational coordinates be denoted by (yX,y2).

Now, let / denote • conformal map satisfying the fol-

lowing relations:

=' = + (2.s)

and

Applying eqns. {2.5)-{2.6), the Cauchy-Rkmann equa-

tions, and the general tensor form of (2.2) then yields

the generallzed Rayleigh equation in terms of (yl,y_):

2a
(4 - _°_)_ + _VW. V_ = 0 (2.7)

where

2.2 The Hybrid Method

This section develops • hybrid numerical scheme

to solve the inviscid, incompressible stabilitTproblem

defined by eqn. (2.2). Hybrid techniques axe humeri-

cad method_ which combine series approximations with

finitedifferencecalculations. For two dimensional par.

tialdiilerentiaJequations, such a_ the stabilityproblem,

hybrid methods generate discreti_ation matrices whose

order varies linearlywith the •pproxirnating series sum-

mation bound, N. This implies that the number of op-

erations required to compute an eigenvalue of equation

(2.2) i_on the order of:

o( v (2.s)

The estimate given by (2.8) isa great improvement

over the number of operations required by spectral and

pseudospectral methods. These series methods gener-

ate discretis•tion matrices from two dimensional series

approximations and produce matrices whose si_eizpro-

portional to:

(N + 1)_ (2.9)



Equation (2.9] implies that these methods require a

number of op,a'stioml on the order of:

o((y:+x)s) (2.1o)

to compute a_ eigenv-,due of the R.ay]eigh problem.

Furthermore, hybrid techniques have the adr',mtage

of increaJed xccurxcy over purely finitedifference ap-

proaches. The _curxcy of a hybrid scheme depends on

the properties of the approximating se_es and on the

accuracy of the finite difference scheme. The present

study uses a pseudospectral series to develop a hybrid
scheme.

A pseudospectral seriesassumes that the function

to be approximated is known, or may be computed, on

a Exed set of points in the computational domain. This

information isthen used with an appropriate set of buiJ

functions to form a finiteseriesapproximating the func-

tion. Basing the function's approximation on a known

set of poiD_s defines a grid in the computational domain.

The hybrid method presented here ksdefined using

a pseudospectrx/ series based on the Chebyshev poly-

nomiah. The detaL1J of the pseudospectra.] technique

come from the one dimensional pseudospectral theory
in Gottlieb et xlIs.

To outline the method, consider the Rayleigh

eqn. (2.8). Assume that the function to be approxi-

mated may be represented in a serie_of the form:

N

:(y_,y=)_ _ o(y:,y_)/;(y') (2.11)

Here y_ represents the aaimuthaJ vamiation,while y_ rep-

resents d_e radial v-oxiationin a_n m'bitra.r'yjec cross sec-

tion. In eqn. (2.12), the coef_cients a(v:, V2), axe func-

tions of the grid points defined by:

_,'=cos(_-)fory=o,1,_,...,_v (2.t2)

and the r_di_l direction, y_. Moreover, the brads func-

tions, f_, axe rationM functions defined by:

with

and

CO = CN -_ 2

ci = I otherwise.

where
_O

- aW

To simply thisequation, the derivatives of the approx-

Lmating b,_sisfunctions at the grid points must be de-

termLned. Reference 18 gives these derivatives _s:

:/'('_)) = (D,),_ (2._)
a(v _)" t_, =C

where

(D_),;

_nd where

_,(-t)'+Y
C' I,(_- _)

if _'_ _ (2.17)

(D'),,= -u' (2._s)
2(_- (_)_)

2/v_÷ _
(D:)oo = {2.19)

6

(D_),VN = -(DI)oo (2.20)

Now, combining eqns. (2.16)-(2.21},eqn. (2.15) and al>-

plying eqn. (2.14) produces a system of line,r,second or-

dinaxy differentiM equations in terms of the coefficients:

2a .0W ,

N

-_o_(u_,:) + _,q_,_)(:)_,.

2a _W _v

_q_,l _=0



"he eqns. (2.22) axe then recut ts a collection of frost
.rder systems. This collection of systems of first order

quations can then be recaJt as a matrix equation with
_e unknown vector being the coefficients of the approx3-

_a_g series. The resulting matrix equation may be in.

• _.-'_ted once the bounda.,-y conditions axe determined
u • xdded to the matrix equation.

.3 The Boundary Conditions

In order to evaluate numerically the discretisa-

;on matrix usociated with the Rayleigh equation, the

,)undary conditions must be included. In the region

utside of the mixing layer, the velocity is constant, re.

ucing the Rayleigh equation into the Helmholts equa,
on:

= 0 (2.23)

'qlowing Batchelor and Gill 1_, the general solution of

Jn. (2.23)in polarcoordinatesfor the exteriorregion

• given by:

n_0

"here H_ and H_ denote Hankel functions of the first

nd second kind respectively. Using the condition, (2.3),

_at the pressure must approach sero a.s r approaches in-
:ity, implies that the boundas'y condition on the outer
fge of the jet flow cross section is of the form:

= _ A. H_ (Jar) exp(inO) (2.25)
rt._O

/_reover, since the pressure must be bounded as r ap-

"_aches sero, condition (2.4), the boundazy condition
', the inner edge of the jet flow cross section becomes:

= _ BnJ.(iar) exp(inO) (2,26)
n-_--O

"here J,_ is the Bessel function of the fix_t kind. Next,
'1.: physically realizabh _irnuthal terms axe determined

':'order to simplifyeqms. (2.25)-(2.26).All the jet ge.

'!rsetriesto be computed in thisstudy axe symmetrical

'_I,outboth the hori.sontaland verticalaxes inthe plane.

t!,us, from Morr_ °, the possible pressure vaxiations in
II_ . . o

,e astmuthal dzrectmn correspond respectively to four
_--sses of functions depending on symmetries about the

ajor and minor axes. This then gives the general solu-
'1

'n for the physically possible boundary solutions. The

"ulting infinite series defining the pressure boundary

'lditions on the edges of the shear layer cross section
come:

A.C,_(icxr) cos(2nO) (2.27)
rt=O

00

sin((2,, + ,)e) (2.2s)
_=0

O0

A.C.(io,)sin{(2, + 2)e) [2.29)
rt_O

a.c.(ior) + (2.30)
nmO

where C, represents either J, or H_. Now, recalling
that the jet flow cro_ section is a_umed to be symmet-
rical about both nasa, allows the computation to be re-

stricted to the first quadrant in the physical plane. The

standaxd computational domain for this physical region

will be a rectangle. On the edges of the computational

rectangle which correspond to a constant radial value,
the functionsdefinedby eqns. (2.27)-(2.30)willbe ap-

plied.Before these boundary conditionsaxe evaluated

incomputational space,they axe transformed in terms

ofthe computational coordinatesystem using the met-

ticgeneratedby the conformaJ mapping. On the verti-

caJedges ofthe computational domain, which represent

linesofconstantangle,the boundary conditionsare de-

termined by the sysmmetry conditions.Ifthe pressure

fluctuationisnot symmetrical about an axis,that is,if

itchanges sign acrossan axis,then the corresponding

boundary conditionbecomes:

= o

However, if the pressure fluctuation is symmetrical

about an axgs, that _, the sign does not change, the

pressure boundary condition becomes:

ap
0-7 = o (2.32)

Notice that the boundary conditions defined by

eqns. (2.27)-(2.30) for the horisontal edges of the com-
putational domain axe consistent with the boundary

conditions imposed on the vertical edges of computa-
tional domain.

The matrix equation may be integrated explicitly in

the radial direction once the boundary conditions have

been converted into the appropriate initial conditions.

The boundary conditions on the horiaontal edges of the

computational domain axe converted into initial condi-

tions using a generalized shooting method. Let N de-
note the summation bound for the approximating series.

Then there axe N - 1 interior grid points. On the lower

edge of the computational domain, the first term and its
derivative from the exact series solution az given above
axe evaluated. This becomes the initial condition on the



lowerboundarY. The matrix containing the system of

diHerential equations is then integrated to the geomet-

ric center of the computational dom,_n, yielding V_.

At each step in the explicit integration procedure the

boundary conditions on the vertical edges of the com-

putational domain axe satisfied by solving for the first
and ]_t coefficients of the approximating series or its

derivative.

On the upper edge, the first term in the exact se-
ries solution and its derivative axe evaluated also. Then

these values axe used to integrate the matrix equation

to the center of the computational domain, producing

V_. ThLS process is repeated for each term in the series
using N- 1 terms from the exact series solutions on the

horizontal edges of the computational domain.

The resulting integrated solutions and theL- deriva.
tires axe then matched at the center of the domain. The

matching is accomplished by requiring that a Linear com-

bination of the 2(N - 1) solutions be equated to sero:

N-!

(R,vt + S,V ) = o (2.33)

Requiring that eqn. (2.33) have a non-trivial solution

then forces the determinant of the matrix of integrated
solutions to be sero. RecaJlhg that the solution vec-

tors axe implicit functions of a fixed real frequency and

some guessed complex wavenumber implies that a local
scheme may be used to determine the wavenumbers. In
this study the Newton-Raphson scheme w_ used.

Once a wavenumber or eigenvalue of the Rayleigh

problem has been computed, its corresponding eigen-
function may be determined. The hybrid method com-
putes an eigenfunction a_ it integrates the initial condi-

tions from the edges of the shear layer to its geometric
center. However, the relative weights of the integrated

solutionsaxe not known. These weightsaxepreciselythe

coefficientswhich forcethe solutionsand theirderiva-

tivestomatch in the shearlayer.

Recallthat thismatching isgiven mathematically

by eqn. (2.33),where R_ and Si axe the unknown coeffi-

cients.These coefficientsmay be determined by reca_t-

ing (2.33)inthe form:

After the matching coefficients axe determined they

axe used to scale the initial conditions. The Rayhigh
problem is then integrated a final time using the scaled

initialconditionsand the p_udospectrxl amplitudes,

o(l_i, it2), axe stored along each radiLl grid line. There-
fore, the eigen/unction iJ approximated discretely in the
radialdirection,and by a seriesin the azimuthal direc-

tion.

2.4 The Mean Velocity Progle

The mean velocity profile used in the computa-

tions iJ based on a generaLilation of the profile given by
Michalkea°. For the round jetMichMke chose a velocity

profileinthe mixing layerofthe form:

w(,) : l+tanh( iX- 1) , (2.3s)

for R-- < r< oo
2

where R is the jet radius, 0 is the momentum thickness
and _ hs a fixed real number satisfying:

ta.nh[4_) _ I [2.36)

Notice that the velocity profile defined by eqn. (2.35)

is only a function of the radial direction. Furthermore,
since co_ormaJ maps axe being applied to generate the

computational coordinate, (yX,y2}, the radialcoordi-

nate,y2 willbe uncoupled from the a_imuthal coordi-

nate, l/l,allowinga generalvelocityprofileto be ex-

pressedinterms of y_. To generMhe eqn. (2.35),let/

denote a con/ormal map caxryinga standard computa-

tionalrectangleonto the firstquadrant ofa jetflowcross

section.ALso,letf(yz + iy:) denote the minor axis of

the jetcro_ sectionin terms of the computational cc-

ordinatesystem. Then in terms of f the generalised

velocityprofilehsdefinedas:

1 ( - _B ](yxf(Yl+iY2) )+iy_)W(y=) -- 1+ t_h(2--_ll 1) ,

(2.37)

for _ _<y: < oc,

where y_ isthe halfvelocitypoint,B isthe length of

the minor axis,_;B isthe momentum thicknea_on the

minor a,x.is,and yy isa realvMue satisfying:

1 (2.ss)

The momentum thickne.M used in the generalized mean

velocity profile is defined on the minor aJds by:

/;8B = ?W(1- W)dy for z---O (2.39)



_s _n example of a non-.-circulax mean velocity profile,

f the function aco.(I/l + il_) is used to _enerate the
>hysical coordinate, the mean velocity profile defined

_y eqn. (2.37) reduce* to"

i I B sinh(y_)w{y = _1+ tanh(2-7;ll {2.40)

for lt_ < l/2 < oo.

."he next section will outline test results for the stability

ode using the velocity profiles defined in this section.

_.0 NUMERICAL RESULTS

In this section the generxli=ed Rayleigh problem

,overning the Rnear inviscid stability of incompressible

*ts of arbitrary geometry is solved using the hybrid

_.heme described in the previous section. To consider

,ts of axbitraxy geometry, coaformal transformations

,ave been used to map standaxd computational domains

,nto jet flow cross sections in physical space. Calcula-

ions axe performed for the stabilityof the annular shear

ayer region of rectangulax and non-confocal ellipticjets

,f aspect ratio 2. These c_dculations axe performed for

,zimutha] normal mode, corresponding to the flapping

md vaxicose instabilitiesobserved in non--circulaxjets.

addition, ex_,-nples of the eigeafunctions for these

a.ses axe shown. Firstly, the vMida_ion of the stability

'ode, by comp_'i_on of its results to benchmark calcu-

_tions for the round and con/oca.lellipticgeometries, is
/iven.

*..1 Code Verification

The stability code has been validated numerically

_'_r several different geometries and boundary condi-

';ons. The series of numerical tests performed involved

"_mputing the eigenv_lues aseociated with the maxi-

"ram rate of growth for the flapping and wxicose as-

"nuthaJ normal modes of incompre_ible circular and

' _n/ocal elliptic jets. These results have been compaxed

'_ the results of Morris _, who computed the wavenum-

';er_ a._ociated with the maximum growth rate for in-

,repressible confocal elliptic jet,.

In order to compaxe the present computation with

"_orris'9 results, a relative error is introduced. Define:

%Error = I_',- abl (_.i)

" here ap axe the current results and ab axe the published

-suits.

For the circular case, the complex exponential map

" used to generate the grid for the generalized Rayleigh

problem. The mean velocity profile used i, this com-

put,tion is given by equ. (2.35) above. I.u all the test

ca_a the momentum thickn_ on the majo._ axis, 8A,

b taken to be 0.02, as in ref.g. ALso, all the computa-

tions a_umes geometries such that the velocity profile

anti*flea:

.001 _< w < .000 (3.2}

in the shear layer. Table 1 compares the wavenumbers

computed using the hybrid technique, for the aspect ra-

rio 1 case, with those of ref. 9 for the aspect ratio of

1.001.

Mode _ Fre_ Hybrid Morru %Error i

V _ 5s,41

F,_ ; 5.453

FB 5.456

).0.20;-,.=,.68;,

10.244-$.652,

10.253-5 652,

1£).199-3.68_,, 0.07

10.23f-5.649, 0.06

10.243-5.65h 0.08

Table 1 Aspect ratio 1.0 results for the hybrid

method compared to previous c_dculations9.

In Table I, FA and F_ represent a_imuthal flapping

modes about the major and minor axes respectively,

while V represents the varicose aaimutha2 mode. The

resultsof the stabilitycode are approximately indepen-

dent of the number of collocation points in the asimutha]

direction. For the circulax case, a Runge--Kutta integra-

tion scheme is used with a fixed step--sineof 0.004.

For the confoca] ellipticcase, the complex cosine

function is used to calculate the grid for the general-

ised Rayleigh equation. This coordinate transformation

generates ellipticcylindrical coordinates in the physical

plane, a_ used in ref.9. The confoc_l ellipticthin sheax

layer calculations have been performed for the _pect

ratio 2 case. The mean velocity profileused in both cal-

culations is a special case of the genera/ profile of the

last section and is given by eqn. (2.40). Table 2 com-

paxes the ruults of the hybrid method to the results of

ref.9 for the a_pect ratio 2 con.foc_lellipticshear layer.

Mode Freq _'brid Mort,'. %[.rro."

V ._.63; l 0.1M>-4.496, l0.I 3h--4.h0;, 0.-"3

/'_ 5.010 9.307-3.664," g.322-3.677i 0.19

/'_ $.6S7 I0.045-4.472," I0.07T-4._7, 0.33

Table 2 Aspect ratio 2 results for the hybrid method

compared to previous calculations _.

The step si_e is 0.006 for the aspect ratio 2 c_e. For

the aspect ratio 2 con/ocaJ elliptic shear layer, the results

shown axe computed with 7 interior collocation points.

If less than 4 interior collocation points axe used the



computedwavenumbers exhibit a lazge error in compax.

/son with the benchmark values. Conversely, if a lazge

number of interior collocation points axe used, say above

g, it become* vary difficult to locate the wavenumbers

associated with the maximum growth rate. By adding

more interior points to the computation, two d/stint:

limiting processes axe afl'ected. Firstly, the approxima-

tion of the eigenfunction becomes more a_cu.rate becau_

more geometric information about the physical domain

is supplied to the approximation. Secondly, the func-

tions defining the boundary conditions on the edgu of

the sheax layer become more _curate by including terms

which Êluctuate more rapidly in the a_imuthal direction.

It is believed that adding solutions which represent the

rapidly fluctuating uimuthal terms to the integrated

discretisation leads to a determinant minim;,ation prob-

lem which is ill-conditioned. Presently, th/s represents

the main difficulty found in solving the Rayhigh prob-

lem with the hybrid method. Since the general/sed

shooting technique couples the geometry and the bound.

a.-y conditions, one possible way of correcting the prob-

lem would be to normalise appropriately the determi-

nant equation before it is minimized. No further work

on this problem has been attempted in the present study.

In the analysis of the instability of jets of axbitraxy

geometry the eigenfunctions associated with the com-

puted wavenumbers may also be determined. Recall

that in this case the eigenfunctions correspond to the

pressure function, /5. All the other fieldvaxiables may

be related to thi_ function. Thus, once the pressure

eigenfunction isknown, the distributions of the velocity

components associated with instability waves or laxge

scale coherent structures axe determined completely.

The technique for the evaluation of the eigeafunc-

ikons was described in Section 2.3. Two numerical

checks have been performed in analysing the results of

the eigeafunction calculation for the round jet. Firstly,

the stored integrated solutions have been shown to

match at the geometric center of the computational

domain. Secondly, the computed constants, given in

eqn. (2.34) which weight the initialconditions have been

checked to verify that the code /S predicting the funda-

mental instabilitiesfor the varicose and flapping modes.

For both of these numerical tests the code performed

well. Further numerical checks have shown that the code

also predicts correctly the higher order modes.

As a verification of the eigenfunction calculation

procedure the eigenlunctions for the vaxicose (axdsym.

metric I and flapping lhelical)instabilitiesof the round

jet have been computed. The corresponding eigenvalues

axe given in Table 3. The eigenfunctions axe shown in

Figs. i and 2 in the form of iso--pressurecontours. The

contours axe plotted for the funda.mentaJ varicose and

flapping i.nJtabilitiesgiven by eqn. {2.1) with "7 equal

to 0. ALl the contours shown axe for positive values

there axe no negative values for the sero phase case. Be-

low, when the eigenlunctions axe shown for the elliptic

and recta.ngulaxcases the positive and negative contours

axe shown sepaxately. These plots further assume that

the pressure field is normalised by the modulus of its

max/mum value

wvnum riV 5.44 10.20-5.68i

FA 5.45 10.24-5.65i

Table 3 The frequencies and wavenumbers used to

compute the eigenfunctions a.uociated with the round

jet.

The eigenfunction for the fundamental varicose

mode is shown in Fig. 1. ha th/s case the derivative of

the pressure with respect to the _imuthal direction is

sero on both axes. Moreover, as expected, the pressure

contours show little uimuthal vaxiation. The minor aJ-

imuthal variation in the pressure eigeafunction indicates

that the eigenSunctions contain very small contributions

from higher order modes.

.4_. \

| .2 ._ .b

J

J,l,l,z,J

Fig. I l_o-pressure contours for the vaxicose mode:

circular jet ca_e, _/= 0. (Positive contours only shown)

The contour plot for the fundamental flapping in-

stabilityabout the horisontal _ isshown in Fig. 2. For

this mode, the pressure contours should be symmetrical

about the vertical _ and sexo along the horizontal

axis. For both of these examples, the hybrid method

works well in predicting the properties of the normal-

ised pressure shape function.
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'_]g. 2 I_o-pressure contours for the flapping mode:

-u'culax jet cue, "7 = O. (Positive contours only shown)

3.2 Stability Calculations

For the numerical experiments, a non-confocal el-

iptic shear layer xnd a rectangular sheax layer of aspect

-atio 2 axe chosen. I_oth o[ the jet shear layers axe non-

"JL'nensionaJJsed by requiring that the semi-major and

_emi-minor xxes, A and B, s_tisfy:

A

= 2 (3.3}

lnd

= 1

_]ong the half velocity line in the shear layer. Further-

_ore, both cases a_ume the hyperbolic tangent mean

,elocity profile defined by eqn. (2.37). All numerical

'ests have been performed aamuming z constant too-

'nentum thickneu of 0.02 in the computational domxin.

#n the physicaJ plane this results in a non-uniform ax-

_muthal variation in the momentum thickness: the mo-

'qentum thickness on the minor axis being greater tha.u

'hat on the major axis. This corresponds to the experi-

'nental profilesobserved by Seizer et al2i for an elliptic,

_pect ratio 2, supersonic jet.

The firststep in analysing the instability of the

qon--cLrcular jets is to compute the complex wavenum-

listsor eigenvaJues for a set of real frequencies. The

_azes considered axe the vaxicose and flapping a=imuthal

'ilodes. The flapping case is for flapping about the

'hajor xxi_. The wavenumbers axe computed by fixing

frequency and then making an initialguess for the

_ravenumber. A Newton-Raphson iterative scheme iz

_sed to locate the eigenv_]ues. The computed wavenum-

1,en and their corresponding frequencies are used to de-

' ermine the local growth rate and pha_e velocity for the

•_stabilicy waves.

For the sheax layers considered, the hybrid method

was run with both 5 and 7 interior collocation Points.

The dillerencebetween w_venumbers for these cases ks

rypicalJy in the second and third decimal pl_ces. All

the calculltions for the ellipticshear layer axe based on

? interior collocation points, while those for the rect-

angulw" sheax layer axe based on 5 interior collocation

points. Figure 3 shows the variation of the x.xJxlgrowth

rate with frequency for the varicose mode of the aspect

ratio2 ellipticjet. The maximum growth rate is slightly

lower than that determined for the confocxl ellipticshear

layer: see Table 2. The variation of the phase velocity,

given by to�a,, for this ca_e isshown in Fig. 4. This re-

sult istypicalof allthe calculations for both the varicose

and flapping instabilitiesin the ellipticand rectangular

jet crams. For the varicose instabilitythere is generally x

slightdecrease in the phase velocity at low frequencies.

However, in allthe cases considered, the phase velocities

of the instabilitywaves are approximately 60 percent of

the centerline velocity. These results axe in agreement

with those of Koshigoe and Tubis i°'zl,

-t.O

3.0

-- Gt 2.0

_.0
d,!/I/

0.0 "_--_l " i - i - l " i

0.0 2.0 4.0 6.0 8.0 I0.0

Fig. 3 Vaxiation of the axial growth rate with fre-

quency. Ellipticjet,aspect ratio 2, varicose mode.

To determine the most unstable mode the three

largest growth rates were interpolated using a second

order Polynomial. Table 4 shows the frequencies of the

mxximum growth rates for the ellipticjet.

Mode Freq J Wavenumber

V 4.49 t 7.8fi-3.50_

FA 4.16 I 7.75-2.95_

Table 4 The frequencies and wavenumbers used to

compute the eigenfunctions a_ociated with the non-

conJ'ocal eRiptic jet.
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Fig. 4 Variation of the phase velocity with frequency.
Elliptic jet, aspect ratio 2, var4co_e mode.

Figure 5 shows the variation of the axial growth

rate with frequency for the varicose mode of the aspect

ratio 2 rectangular jet. The maximum growth rate is

much lower than that for the elliptic jet. In addition,
the frequency for the maximum growth rate is aAso re-
duced. Table 5 shows the frequencies for the maximum

growth rates for the varicose and flapping instabilities.
This frequency should give an indication of the initial

vortex shedding frequency for the jet. It is not clear

whether the calculated reduction in this frequency for

the rectangular jet is due to the change in the geometry
or to the distribution of momentum thickness around

the jet. This question is being _ldreased by the authors
in additional calculatioms.

4.0

3.0

-- t2t 2.0

1.0

0.0 l _ - I " w " ]

0.0 2.0 4.0 6.0 &.O 10.0

Fig. 5 Variationof the axialgrowth rate with fre-

quency. Rectangularjet,aspectratio2,varicosemode.

As a final calculation we consider the pressure
eigenfunctions for the elliptic and rectangular jets. Fig-

Mode Freq Wavenumber
V 3.16 5.71-1.92t

F_ 2.90 5.46-1.98i

Tzble 5 The frequenciesand wavenumbers used to

compute the eigenfunctionsassociatedwith the rectan-

gularjet.

ure 6 shows the iso-pressurecontours forthe most un-

sttblevaricoseinstzbiJJryin the ellipticjet and Fig.7

shows thecorrespondingcontours inthe rectangularjet

case. Politivecontours axe shown in the upper haLfof

the figureand negativecontours axe shown inthe lower

half. The sero contour appears in both. The most

notablefeatureLn both figuresis the lack of regular-

is'y,compared tothe circulaxjetcontours shown above.

The pressurefluctuationsare confinedtoseveralregions

with no apparent relationshipto the particulargeome-

try.Very similardustributionsare found forthe gapping

modes sothat they axe not shown here.
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Fig. 6 Iso-pressurecontours for the ellipticnon-

con.focaljet.Aspect ratio2,varicosemode, "7= 0. (a)

positive contours, (b) negative contoura.
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Fig. 7 _o--pressure contours for the rectangular jet.

Aspect ratio 2, varicose mode, -i = O. (a) positive con-
tours, (b) negative contours.

Though the contours of equal pressure level show

no apparent structure this is not the case for the con-

tours of equal Reynolds stresses and their gradients. In

the rectangular jet c_e the distributions indicate that

the jet is developing initially _ two independent two--

dimensions3 shear layers. Whereaz, in the eUiptic jet

case there is a continuous variation from the major to

the minor axes with the dominant fluctuations, for the

modes considered being close to the major axis. Fur-

ther detaih are contained in ref.12 and willbe reported

elsewhere.

4.0 Stunmary

This paper has presented a calculation procedure to

determine the stability of jets of arbitrary cross sections.

Calculations have been performed for elliptic and rect-

angular jets. Both eigenvalues and eigen/unctions for

the pressure have been calculated. The velocity com-

ponents may be obtained from the pressure using the

lineaxized equations of continuity and momentum. In

turn this enables the second-order statistics,including

the normal and shear stresses,associated with the in-

stab_ty waves to be calculated. If it is argued that the

mixing proc_ in free shear layers is dominated by large

scalestractttresand that, locally,they may be modeled

aa instabilitywaves, the_e second--order statisticsaxe all

that is needed to provide a turbulence closure scheme.

This technique is presently being developed by the au-

thors.

The calculations pre_nted here are for incompress-

ibleflow. They are readily extended to the compressible

flow caze a_ad exa_mples of this calculation axe contained

in re/. 12. In addition, this reference contains details

of the conformal mapping technique_ az well _ calcu-

lations of the velocity, Reynolds stress, and Reynolds

stre_ gradient distributions. These calculations are be-

ing u_d by the authors to help understand the axial

development of non-circular jets. The results of this

analysis willbe presented later.
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A LINEAR SHOCK CELL MODEL FOR NON-CIRCULAR JETS

USING CONFORMAL MAPPING WITH A PSEUDO-SPECTRAL HYBRID SCHEME

Thonse R. S. Bhat', Roy S. Baty_ and Philip J. Morris"
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ABSTRACT

The shock structure in non-circular supersonic jets

is predicted using a linear model. This model includes

the effects of the finite thickness of the mixing layer and

the turbulence in the jet shear layer. A numerical solu-

tion is obtained using a conforma] mapping grid genera-

tion scheme with a hybrid pseudo-spectral discretization

method. The uniform pressure perturbation at the jet

exit is approximated by a Fourier-Mathieu series. The

pressure at downstream locations is obtained from an

eigenfunction expansion that is matched to the pressure

perturbation at the jet exit. Results are presented for

a circular jet and for an elliptic jet of aspect ratio 2.0.

Comparisons are made wjt}) experimenta} data.

1.Introdu c ti on

Broadband shock assdciated noise is one of the ma-

jor components of the noise of supersonic jetsoperating

at off-deslgnconditions. As a result,in recent years, ef-

forthas been focussed on understanding the characteris-

ticsand the generation mechanisms of broadband shock

associated noise. The ear}y work of Harper-Bourne and

FisherI has been followed by a number of experimental

and theoretical studies on thistopic. Investigations have

been conducted b)' Tanna _, Seiner and Norum 3"4, Seiner

and Yu s, Norum and Seiner G: and Tam and Tanna z

among others. The noise generation mechanism pro-

_osed by Tam and Tanna s was used by Tam 9 to develop

a stochastic model for broadband shock associated noise.

.:{e obtained very good agreement with experiments for

he near and far field noise spectra and directivity. In

ais stud)'the shock cellstructure was modelled using the

method of multip}e-sca}es of Tam, Jackson and Seiner 1°.

Recently there has been considerable interest in

_on-circular supersonic jets with a view of achieving bet-

.er mixing characteristics and a reduction in radiated
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noise. There has been some progress in the develop-

ment of supersonic jet noise theories for non- circular

jets. Tam _ used a vortex-sheet model for the jet and

predicted the screech tone frequencies in rectangular and

elliptk jets. Morris, Bhat and Chen _2 used a bound-

ar T element method to predict the shock cell structure

and screech tone frequencies in jets of arbitrary geome-

try. Once agaiJ,, a vortex-sheet model w_s used to de-

scribe the jet. Morris and Bhat _3 extended their anal-

ysis of non-circular geometry jets to include the effects

of finite |nixh|g layer thickness using realistic and con-

tinuous mean velocity and density profiles. They also

included the dissipative effects of the smalbscale turbu-

lence through the addition of eddy.viscosity terms in the

momentum equations. However, they encountered some

convergence problems with their numerical technique.

In this paper, the shock cell structure of non-

circular supersonic jets is modelled using a linearized

analysis. In the present study a new numerical scheme is

introduced. This method uses conformal mapping with

a pseudo-spectral hybrid discretization scheme. This

work is an attempt by the authors to develop models

with a robust numerical scheme to predict the shock

cell structure in an efficient manner. The physical model

used here is similar to the one used earlier by Tam, .lack-

son and Seiner _° and Morris and Bhat _3. ]n the latter

case a body-fitted coordinate system was used to set up

the problem for non-ch'cular geometry jets. However,

this scheme had convergence problems. The new nu-

merical method uses the conformal mapping technique

developed by Wegmann 14 and used by Baty xs in his

analysis of the inviscid instability of arbitrary geometry

jets. This method transforms the physical space to a

rectangular computational domain using a series of con-

formal mappings. In the computational space, the flow

variables are represented in a series form using a hybrid

pseudo-spectral approximation.

The next section outlines the development of the

governing equations in terms of a general conformal co-

ordinate system. A description is also given of the im-

plementation of the conformal mapping technique. The

discretization of the model differential equations using a

hybrid pseudo-spectral scheme is also described. Section

3 describes the application of these numerical techniques

to the shock cell problem. In section 4, predictions are



presentedfor a circular jet and an elliptic jet of aspect

ratio 2.0. Also, comparisons axe made with experimen-

tal d&t_.

2. ANALYSIS

The cross-section of the initial region of a jet con-

sists of three regions: the potentia} core of the jet, the

annular mixing region and the ambient fluid surround-

ing the jet. In the potential core and in the ambient

fluid, tile solutions to the linearised governing equations

can be obtained analytically. However, in the annular

mixing region, *.'here the mean velocity and density of

the jet vary, tile solution must be obtained numerically.

The model used here for the shock cell structure is

that developed by Tam, Jackson and Seiner 1° for circu-

lar jets. This model takes into account the finite thick-

hess of the mixing region and the effects of turbulence in

the jet shear layer. A finite-difference technique using a

pseudo-spectral hybrid scheme in conjunction with con-

formal mapping is used here to extend the model to a

study of the shock cell structure in non-circular super-

sonic jets.

2.1 Governing _quations

The non-dimensional linearized governing equa-

tions for the shock cell structure, in Cartesian tensor

notation, are given by:

a w ap_ =0 (2.1)a=;(_uf)+ a=3

a_f aw 1 a, s _ a_uf
Re a=ia=iv_3 .f

(2.2)
W c_ps a u s+ "r-=- = 0 (2.3)

OT.. 3 O_" i

The reference sca]es are ry, the equivalent radius of the

fully expanded jet and U_-, Pi, and pj, the fully expanded

jet velocity, density and pressure, respectively. _ and W

axe the mean density and axial velocity of the jet. The

quantities with a superscript S correspond to the per-

turbations associated with the shock cell structure. Mj

Ls the fully expanded jet Math number. The _sump-

tions made in deriving the linearised equations given

above are discussed in detail by Bhat 16. The mean ve-

locity is assumed to be known, either from experiments

or predictions. It is also assumed that the mean flow is

independent, locally, of the axial distance. The turbu-

lent Reynolds stresses in the momentum equations have

been modelled using a simple eddy viscosity model. The

turbulent Reynolds number is given by, Re = U:.ra./ut

where u, is the turbulent eddy viscosity. The shock cell

structure ks modelled a.s spatially periodic waves that

are time-independent. Using the locally parallel flow

approximation, the perturbation quantities associated

with the shock cell structure can be represented in a

separable form with a periodic variation in the axial di-

rection. This is given by,

/s (=,,==,=_)=/(=,, :_)exp(,o:_) (2._)

where fs is an)' flow perturbation quantity and c, is the

complex axial wavenumber.

The lineaxized eqns. (2.1)-(2.3) are written in terms

of a Cartesian coordinate _ystem. These equations must

be transformed in terms of a general, nonsingular curvi-

linear coordinate system, {yj, y;) in the cross-sectional

plane. This coordinate change can be performed by ex-

pressing the differential operators in (2.1)-(2.3) in gen-

eral tensor form. These are obtained using tile ap-

proach of Eiseman _7, with the axial coordinate given

by, z_ = ya. The shock ceilstructure equations in a

general coordinate system are then given by,

+ _ =o (2.s)oy), (9y3

¢ aW ayk 1 aps Oy.

s 1 _u s
I I a (g_;au,__.a.,.:.,+vgj(2.6)

Rc _ ay_ ayk /_c a_¢_

¢ au s ay_
W_ p" 4- q = 0 (2.7)

oy_ _y_ 8z_

where, 9 = det(gii) and 9_i is the metric tensor. The

metric tensor and its inverse gli are defined as,

a=_az_ (2.8)
gq= _,,, cgy:.

ayl ayy
_a= :-- (2.9)

(:7 "r rn _'rrr a

and

¢" = 1/_,;,. (2.10)

The transformation of eqns. (2.5)-(2.7) in physical

space to a simple computationa) domain is accomplished

using a inverse conformal mapping technique. The for-

mulation is similar to that given by Baty _s and is out-

lined briefly here. Consider a computational domain, _,

in the complex plane (y_, y2). Let f be an analytic map-

ping which maps R onto a given jet flow cross-section

in the physical space (z_,',_). h is assumed that ] has

a nonzero derivative, i.e.

f'(z) = f'(y: *iy2) # 0 for all z E _ (2.11)



7he relation between the coordinates {yl,P_) and

zi, :r_) generated by/(z) is given by,

7he analytic mapping f satisfies the Cauchy-Riemann

.quations,

az___L = az_.__ az_ az_
and .... (2.13)

8y_ ay_ ay_ oyl "

:'he derivative of / can then be written as,

/'(z) a=l .az, a=_ .a=_.... +,--. (2.14)
av, t av2 av2 avj

"he components of the metric tensor, g'i are given by,

9,, = g= = 1/'(,)1_, g,= = 9_, = 0 (2.zs)

".'he components of 90, the inverse of gO, are given by,

g,_ =g_2= 1 and g12 =92_ =0 (2.16)
91,

Then, the resulting equations for the shock cell

;ructure in general conformal coordinates can be writ-

el1,

a . . .ark

. OW ark 1 a# oyk
iaw$c,_ +

:"" a=,- = "W F

'{' }_A'_i - a2a_ (2,18)

a&,- ayk

_,_w_,+ "_av--_a=,---:.= o (2.z9)

here _ is the standard Cartesian Laplacian in terms

the coordinates (yt, y_). The conformal mapping ks

:nerated numerically and the method is described in

:e next section.

.2 Con.formal Mapping

Let .P denote a given jet flow cross-section in the

_.ysicalspace and C be the unit annulus with some in-

:ior radius, /_,such that 0 < _ <1. Let _ be the

nSormal mapping such that C is mapped onto ]). As

--desired computational domain is rectangular, an-

aer mapping must be used to map the rectangular

zion _ onto the annular region C. This is given by the

.oonential mapping exp(iz). The rectangular compu-

:ional domain in coordinates {y_,V2) is given by,

;-=[(w,w)•R 2:_<w<,7,0<w_<_}. (2._o)

a, _ and : are finitereal number_ and £ kspositive.

The discretizationfor the finite-differencescheme,

discu_ed below, involves an _pproxixnating function de-

finedon the intervalI-I, I} in the'azimuthal _ direction,

W- This requires a linear coordinate transformation of

the form

Yi = A_l + B, and V2 = a_ (2.21)

with the transformed rectangular computational domain

defined by:

Computational Domain.

I
Linear Map

Rectangular Domain.

i
exp(_:) Map

Annuls: Region, C

I
Wegmann Map., )4/

Fig. 1 Schem.tic of the transformation from the

computational domain _ to the physical sp_e P

A and B may be determined once the dimensions of

the rectangular domain )_ axe known. The various steps

involved in mapping the rectangular domain J_ onto the

physical space P are shown schematically in Fig. I. The

Wegmann mapping, "_, needs to be determined next,



Let(0.(i=1,2)denote the doubly connected region with

smooth closed boundaries. Here, the subscript i refers

to the inner (i = 1) Lnd outer (i = 2) boundaxies of the

given jet flow cross-section, h i_ assumed that _ can be

parameterized by

z;(t) on O<t<_, for i=1,2 (2.23)

where z,.is a smooth regulax curve. The aim of the

method is to determine a mapping 9, such that the

boundaxies of the annulus C axe mapped onto c,. This

invo}ves determining the image of a point on the unit an-

nulus on the boundary of the jet cross-section.As both

the jet cross-section and the annulus are known smooth

functions, on}), the angle 8 of a point on the annulus

needs to be known to determine the angle, say r{8), of

its image satisfying:

g,(c'_)= z,(r,(8)) (2.24)

The Wegmann method _4 solves for the function, r,

which is also known as the boundary correspondence

function. Any real function r(8) satisfyingeqn. (2.24)
and

,-(8)- R (2.2s)

that is 2x periodic is defined to be a boundary corre-

spondence function. The image r(8) is determined by

satisfying eqns. (2.24)-(2.25). This i_ obtained itera-

tivelystarting from a good guess _ and determining the

correction factor rl such that,

For the doubly connected region, there will be two

boundary correspondence functions for the two edges

of the shear layer. The interior radius of the annulus

is also unknown, and must be determined. It is found

that good initia3 guesses for both the boundary corre-

spondence functions and the interior radius are required

to obtain quadratic convergence. The details of the it-

erative scheme can be found in Wegmann _ and Baty _s.

The conformal mapping is generated numerically using

the Cauchy Integra] Theorem after the boundary corre-

spondence problem is solved.

Once the mapping is completed it /8 necessary to

discretizethe governing equations given by (2.17)-(2.19}

in the computational domain. A hybrid technique which

combines a series approximation with a finite-difference

technique is used here. Let the functions to be approxi-

mated, in the present on.st the perturbations associated

with the shock cellstructure, be represented in a series

of the form:

/¢

¢(Yl,Y2) _ _a{yl,,y2)]i(y_), (2.27)

_--0

with the coefficientsa(yt¢._) t_ken to be functions of

P2 amd the bash functions, ], represented in terms of

Chebyshev polynomials defined by,

= 1(I- (:.2s)
c,N2(_/_- u_;)

7_N{pj) is the derivative of the Arth order Chebyshev

polynomial and the constants c, axe given by,

co = c,v = 2 and c, = I otherwise. (2.29)

The grid in the Yl coordinate direction is defined by,

w_ = co.,7 for : = 0, 1, 2, ...., N (2.30)

The model equations can be discretised readi}y as the

basis function, evaluated at the grid points, satisfies re-

lation

/,-(y,,.)= 6,,. (2.sI)

where 6ii is the Kxonecker delta. In the present model

the derivatives of the approximating b_is functions at

the grid points must also be determined. These deriva-

tives can be obtained using the relations given by Got-

tlieb et al. is

The ttow vaxiables axe all approximated by a series

of the form given by [2.27). The approximating series

are substituted into the governing eqns. (2.17}-(2.19).

These equations axe then evaluated at the interior grid

points. With the use of eqn. {2.31) a system of linear

ordinary differentialequations in the unknown seriesco-

e_cients is produced. The fullform of the equations is

given by Bhat _.

3. Calculation Procedw'e

When the jet shear layer is of finite extent a numeri-

cal so}ution to the governing equations must be obtained

in that region. In order to obtain the numerical solu-

tion, the solution of the governing equations in regions

of constant mean flow properties must be found first.

The separable solutions for the 8ow variables in a polar

coordinate system may be found using the technique de-

scribed by Morr_ _°. The solutions for the Bow variables

axe found to be of the form:

Inner region:

_(r,8} = _ -A. (_ _ ÷ x_)J.(_'_'r)expO'n8 )

a.(r,o) = _ IA.J.(_'A'r) + B.J,_(iAr}]exp(ind)

2)



a in
- B._j.+,(_r)- c.-Tj.(i_,))exp(.,O)

here,

._d,

(3.3)

n iaj.+l(O,r )IA._J.(:_'_)+ e.7
=--

d

+ C. _ {J.(i_r)}]exp(ine)

[3.4)

,_'_ = (°_a_ + ia2_M_)

'uter region:

oo 2_M_i ,
_(,-,e)= _ D.T_ .,l(;_)e,_p(i,e)(3.7)

n oo

_-_ (3.s)n OO

9 iD,, (_.&.(r,e)

n oo

inF.

_r

(3.9)
oo

= I--/-_._.+,,- )

+,E.<+,(i_r) + T_{H. (,_r)))e×p(,ne)

(_._0)

{ere, (ft.,fi_, 6elare the components o[ the velocity fluc-
_ations in the Iz, r, 0) coordinates, d, is the Be_se)

'Jaction of the first kind of order n, H (*) is the }Ion-
el function of the first kind of order n. These solutions

._rve as the initia] conditions to the governing equations.

"he boundary conditions along the two bounding radial

aes of the shear layer must also be specified. These

_nditions depend on whether the solutions sought _e

5d or even about the boundaries. In the present case,

_r a uniform pressure perturbation at the jet exit, so-
:_ions are sought that are even about both the minor

ad major jet axes. The boundary _md initial condi-

ons are applied in the rectangular computational do-

:sis. The LnitiM conditions axe satisfied on the upper

and lower boundariu of the rectangle, which correspond

to the inner Lnd outer edges of the shear layer. The ini-

tial conditions i_ (r,f) coordinates are transformed ha

terms of the computational coordinates using the met-

ric generated by the conformal mapping. The boundary
conditions on the other edges of the computations} do-

main, which represent the two bounding radio] lines, are

satisfied by solving for the first and last coefficients of

the approximating series or its derivative.

The system of difterentia) equations, derived in the

l_t section, may be written as six first- order coupled or-

dinar), ditterential equations in the unknown coefficients.

These equations are integrated from the boundaries for

e_chval.e of. in the series (_._)-(3a0). A linear ,.-
perposition of these solutions is matched at some in-

termediate location in the computational domain. This

results in a system of homogeneous equations in the un-
known series coefficients. The axial wavenumbers are

determined by seroing the determinant of the coefficient

matrix using a Newton-Raphson iterative technique.

The mean velocity profile is assumed to be given

by:
W(r) = w,.e_pl-_n(_),?) (3._)

where 7?= n/b, where n is measured normal to the edge

of the potentia/core and b is the local halLwid_h of the

jet mixing layer. For a cbcu)ar jet, n = r - h and the

relationship between the potential core radius h and b
is obtained from the condition of conservation of axial

momentum. This is given by Tam and Morris _°. In the

case of the elliptic let, these values are obtained from the

measured mean velocity profiles _l for an elliptic nozzle

of aspect ratio 2 operating at its design condition of

M_=1.52. These data inc}ude the mean velocity profiles
along the ma]o_- and minor-axes for several downstream

locations. By fitting the hal/-Gausaian velocity profile,

given by eqn. (3.11), the location of the potential core,

h_ (a}ong the major-axis) and h_ (along the minor-axis),

the halF-velocity poim, b_ (along the major axis) and
b= (along the minor axis) are obtained at the various
downstream locations. The experimental values of the

hal/- widths and the potential core radii are shown hi

Figure 2.

The halLwidths and the potential core radii are
taken to be a linear function of the axial distance. In the

calculations for the circular jet, the growth rate of the
shear layer is taken from the data of Birch and Eggers _

which is 1.266 times the inverse of the spreading rate of

the mixing layer, c.

The mean density ._ may be calculated from the

mean velocity using a Crocco's relationship. The tur-

bulent Reynolds number, based on b, the half-width, ks
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Fig. 2 Variation of Shear Layer Parameters with

Axial Distance of a 2:1 Elliptic Jet. *,bl/rj'; A, b2/r);

o,h_/r,; o, h2/r,. %. = M, = 1.32.

set equal to 300. The numerical integration is performed

using a fixed step size fourth-order Runge-Kutta scheme

with 32 stepsinthe domain ofintegration.Calculations

axe performed in one quadrant only based on the as-

sumed symmetry of the mean velocityprofileabout the

major- and minor-axes. In the case of the circularjet,

three interior}inesaxe used, while for the ellipticjet,

nine interiorcollocationpoints axe used. The pertur-

bation pressureas a functionofdownstream distanceis

calculatedfrom the pressureperturbationatthe nozzle

exit and the axial variation of the wavenumber, a, for it

given mode. The pressure may be written as

p(z)= (p,,)0expl_,r(z_)e_l,(_.12)
_----Or=!

where (P,,)0 isthe axnplitudeof the n-r mode at the

nozzleexitamd (a,_) isthe complex axialwavenumber

for that mode. These amplitudes axe calculatedfrom a

vortex-sheetmodel of the jet.

The vortex-sheetmodel was proposed by Prandtl;_

and Pack ;4, and extended by Tam and Tanna s. The

weak shock ceil structure is modelled a.s a small-

amplitude disturbance superimposed on an otherwise

perfectly expanded jet. The assumption of weak shock

cells restricts the analysis to supersonic jets operating

at slightly off-design conditions given by

IM_- M_t _<1.0 (3.1_)

where M i and Ma axe the fully expanded jet and de-
sign M_ch number_. The relationship between the fully

expanded and design conditions are given by Tam and
Tanna I. The fully expanded jet is represented by a col-

umn of uniform flow bounded by a vortex sheet.

The linearized equation for the pressure perturba-

tion inside the vortex sheet is,

02p s

V2p s - M_ Oz----_ = 0 (3.14)

Using elliptic cylindrical coordinates related to Caxte-

• Jan coordinates by

z = a cosh(p)cos(O

and,

v = _sinh{p)sin(0)

Z_---Z

eqn. {3.14)becomes

2 02p s 02p s

02 (COSh 2p 28)COS

(a.ls)
The vortex sheet is bounded by the ellipse p = Po-

The boundary conditions axe

ps = 0 on the ellipse p = Po (3.16)

and,

at z = 0, pS = Ap everywhere inside the ellipse p = p0

(3.i_)
A separable solution is sought in the form,

ps (p,e) = F(p)C(e) (3.18)

The equations for F{p) and G(8) are found to be,

d_F

dp_
- (_- 2qcosh_p)_= 0 (a.1_)

and,

dfA+ (_- _qcos_s)c= o (3._0)

where A isa separationconstant and q = -a;(M] -

1)_/_. zqu_tions (a.20) and (3.a_) axe the Mat_ieu
and the Modified Mathieu equations respectivelywith

parameters A and q. In general,the solutionsof these

equations axe given by the four classesof Mathieu and

Modified Mathieu functions.The only solutionwhich is



symmetric with respect to both z and y axe., i, given

by,

ps(p,e) = q).,.(e,q) 13.21)
r._O

where, Dn is a constant to be determined from the inJtin]

condition, and ce_ and Ce_,, axe the Mathieu and the

Modified Mathieu functions respectively.

The boundary condition (3.16) requires that

Cea,(po, q) = 0 and thh gives the roots q,,. In cal-

culating P0, the dimensions of the fully expanded jet use

used. The pressure perturbation at the nosz}e exit is

then given by,

n=Or=l

where, Ap is the pressure difference at the nozzle exit,

calculated using the one-dimensions2 isentropic rela-

tions, and is given by eqn. (2.3) in Tam, Jackson and

Seiner 1°. By means of the orthogonality property of the

Mathieu functions, the coefficients D.._ are found to be,

Icosh=p- coneJ edpl /
J {3.23)

{ q,,,)

IcoJh2p - co_20Jdedp }.

The integrals are evaluated using the method suggested

in McLachlan _. In the limit, a.s the aspect ratio tends to

unity, eqn. (3.23) reduces to eqn. (2.1b) given in Tam,

Jackson and Seiner _°. The initial mode amplitude in

eqn. (3.12) is related to D,, by,

(p.,)o = D..c,2.(p,q..)c,=.(e,q..), (324)

for given values of p and 8.

The calculation procedure may be summarized as

:he foLlc_wing steps. (I) The pressure perturbation at

_he jet exit is obtained as a Fourier-Mathieu series ap-

_roxgmation, eqn. {3.22). (2) The axial wavenumber for

a given mode at a given axial location is obtained from

solution of eqns. (2.17)-(2.19} using conformal map-

3ing and a hybrid pseudo-spectral dlscretization. {3)

The pressure associated with the shock cell structure

.s calculated as the superposition of contributions from

._ach mode from eqn. (3.12).

4. Results

This section presents the calculations for the shock

cell structure in a circular jet and in an ellipticjet of

aspect ratio 2. In the case of the elliptic jet, the predic-

tions are compaxed with the experimental data obtained

recently at NASA Langley _l. These measurements are

for an elliptic jet issuing from a nozzle of aspect ratio 2

and operated at several off-design conditions. The de-

sign Much number of thLs nozzle i_ 1.52.

Two dilIerent operating conditions have been con-

sidered - an underexpanded jet (fully expanded jet Math

number, M/ = 1.64, design Much number, Md = 1.52}

and an overexpanded jet (M:. = 1.36, M_ = 1.52). It

should be noted that in the eaxlier work of Morris and

Bhat la, two di_erent operating conditions (underex-

panded and overexpanded) were considered for the cir-

culax jet. The predictions obtained for these cases were

compared with the experimental measurements of No-

rum and Seiner 2G and also with the results obtained with

the multiple-scales model of Tam, Jackson and Seiner 2°.

The comparison showed very favorable agreement. In

this study, emphasis is placed on obtaining predictions

of the shock cellstructure for comparison with the ex-

perimental data for the ellipticjet.

Table i. Initialamplitudes for the various modes of

ellipticjet,M

Mode No.

01

02

03

04

11

12

13

14

=1.64, Md= 1.52.

(p,,)o/p_

0.31506

--0.12058

0.07365

-0.05301

--0.09432

0.05190

-0.03351

0.02475

Mode No.

21

22

23

24

31

32

33

34

(p..)o#°
0.04636

-0.03442

0.02305

-0.01739

-0.02636

0.02611

--0.01779

0.01365

Table 2. Initial amplitudes for the various modes of

elliptic jet, jig =1.36, M_=1.52.

Mode ModeNo (p..)o/p°
O1

02

03

04

11

12

13

14

-0.33231

0.12597

-0.07692

0.05534

0.10153

-0.05429

0.03506

-0.02588

21 --0.05083

22 0.03589

23 --0.02413

24 0.01821

31 0.02967

32 -0.02703

33 0.01859

34 -0.01428

In order to obtain a reasonable description of the

perturbation pressure, the number of modes to be con-



sidered in eqn. (3.12) h_ to be determined. This can be

achieved by ca]culating the amplitudes of the Fourier-
Mathieu series coefficients representing the perturbation

pressure at the nozzle exit, see eqns. (3.22) and (3.23).
Henceforth, any given mode is designated by the indices

hr. For example, mode O1 corresponds to n = 0 and
r = 1. The initial amplitude of any given mode is a

function of both n and • as well as the jet operating

condition. This dependence can be seen in Tables 1 and

2. The amplitudes presented here are the perturbation

pressure (P,,)0 on the jet centerline normalized by the
ambient pressure p,,. It can be seen that for a given n,

tile amplitude decreases as • increases. The amplitudes
also decrease aan increases for any given r. It is also

clear that many modes would have to be considered to
provide a perfectly uni/orm exit perturbation pressure.

The variation of the perturbation pressure at the noz-

zle exit along the major- and minor-axes is shown in

Fig. 3 for the underexpanded elliptic jet, where L_ and
L_ are the dimensions of the fully-expanded major-and

minor axes, respectively. Here, contribution from the

modes n = 0, 1, 2 and 3 are considered where for each

n, four roots (i.e. r = 1, 2, 3 and 4) are considered.

This figure reveals that in spite of considering so many

modes, there is still some nonuniformity in the pres-

sure variation across the cross-section of the jet. This is

characteristic of the difficulty of approximating a step
function with Besse] functions, in the circular jet case,

and modified Mathieu functions, in the elliptic jet case.

However, as the amplitude of the higher modes is reason-

ably small, it is assumed that a practical approximation
can be obtained by considering fewer modes. Hence, in

all subsequent calculations for the elliptic jet, the modes

considered are 01, 02, 03, 04, 11 and 12. The difference
between the sum of the contribution of these modes and

the pressure difference at the exit, obtained using isen-

tropic relations, is less than 10% for both the underex-

panded jet and the overexpanded jet. Calculations at

other operating conditions for both circular and elliptic
jets have shown that the number of modes required to

obtain a given degree of accuracy is a strong function of

the jet operating conditions.

:Figure 4 shows the axial pressure distribution ob-

tained for the underexpanded jet along the centerline of

the elliptic jet. Figure 5 is for the case of the overex-

panded elliptic jet. The sum of the contributions from
the six chosen modes is compared with experimental

data of reg. 21. Here, the normalized pressure pertur-

bation is given a.s a function of downstream distance, z,
referenced to the equivalent radius of the fully expanded

jet, r_. As can be seen, i/i both the cases, there is favor-
able overall agreement between the measured and calcu-

lated pressure distributions. The shock cell spacings and
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the pressure amplitudes are in fairly good agreement. It
should be noted that the numerical results presented i.n

Figs. 4 and 5 have been calculated by shifting the results
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by about half an equivalent diameter in the axial direc-
tion. This is done to account for the unknown location

of virtual origin of the shear layer. Clearly, the present

model being relatively simple, canno_ eltectively model

the initial development of the jet a.s the {tow transitions
from the nozzle dimensions to the fully expanded jet. It

should be noted that the potential core is much shorter

for the elliptic jet compared to a circular jet at the same

operating conditions. For example, from Fig. 2, it can

be seen that h_ _ 0 for z/u _ 12. Also, the calcula-

tions in Fig. 4 stop at z/r:. = ,1.5. Beyond that point
convergence could not be obtained for the eigenvalues of

the higher order modes.

In Figs. 6 and 7, the fundamental mode (mode 01)
for the two cases are compared with the measurements.

No axial shift has been applied to the predictions in

Fig. 7. These figures show that the shock cell spacing

can be approximated to a reasonable extent by the fun-

daznental mode alone. However, the amplitudes of the

shock ceLls cannot be predicted by this mode alone, in
order to get a better description, a greater number of

modes a_ in Figs. 4 and 5 need to be considered.

As mentioned earlier, non-circular jets have been

considered with a view to achieving better aeroacoustic

characteristics. Thus, comparisons of the axial pressure

distribution of circular and elliptic jets operating under

identical conditions have been made. Figures 8 and 9
show this comparison for both the underexpanded and
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the overexpanded jets. In the case of circular jet, the

axial pressure distributions are made up of a linear com-
bination of the first six modes of the shock cell model.



Thesemodesare given by the various zeroes of the Bessel

function, J0, and their amplitudes at the jet exit is given

by eqn. (2.1) in Tam, Jackson and Seiner I°. These fig-
ures show that the shock cellamplitudes as wella_ the

shock cell spacings are less for the e]liptk jet case. Thks

suggests that the amplitude of broadband shock asso-
ciated noise might be reduced in the elliptic jet case.

However, since the decrea.,e is retative}y small in abso-

lute terms it is likely to have a negligible eHect on the
radiated noise calcu]ated in decibels.
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5. Sxxmmary

In this paper a linear model has been used to predict

the shock cell structure in non-circular jets. A confor-
mal mapping technique with a pseudo-spectral hybrid

scheme has been used to calculate the wavelength and
decay rate of the shock cell modes. Predictions have

been obtained for a circular jet and an elliptic jet of as-

pect ratio 2. The numerical scheme used here has been
shown to be more successful than the earlier scheme of

Morris and Bhat zz in obtaining converged solutions for
the elliptic jet. The axial variation of the various modes

contributing to the shock cells for the elliptic jet ha_
been observed to behave in a fashion similar to those

of a circular jet. The amplitudes and the shock cell

spacings for the elliptic jet have been found to be less

than those for a circular jet lot identical operating con-

ditions. These changes are like}y to result in negligible
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Aspect Ratio, r/d=0.0, Mi=1.36 , Ma=l.52. _, 2:1

Elliptic .let; -- -, Cixcular .let.

direct benefits in noise reduction. However, additional

benefits of the elliptic geometry could result due to a

modification of the jet's turbulent structure or a reduc-

tion in the supersonic region of the jet. These mecha-

nisms axe being explored by the authors.
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Abstract

This paper presents a detailed account of the hydrodynamic stability character-

istics of the initial region of an elliptic jet. A realistic mean velocity profile is used.

Calculations of growth rates, phase velocities and eigenfunctions are presented. The

growth rates of all modes in the initial mixing region are found to depend on the

minimum momentum thickness. Pressure fluctuations are found to be greatest for

all modes close to the major axis. An irregular normal mode is found at larger

eccentricities. All modes, odd or even about the major axis and with periods of 7r

or 27r have similar growth rates in the initial mixing region.
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Introduction

This paper presentsa detailed accountof the hydrodynamicstability character-

istics of an elliptic jet in the initial mixing region. The resultsof the analysisserve

two purposes. First, they provide a referencecasefor the verification of analyses

that consider jets of arbitrary shape. Second,they provide some insight into the

initial developmentof large-scalecoherentstructures in a turbulent, elliptic jet. In

a previous paper, ref. 1, the author presentedsomepreliminary calculations. The

present paper extends thosecalculations and correctssomemisinterpretations.

Purely round jet geometriesare the exceptionrather than the rule in practical

applications. Jet engine exhausts are fitted with mixing devices to reduce noise

and decreasethe length of the exhaust plume. Non-circular exhausts also occur

in V/STOL applications in enhancedlift and thrust-vectoring devices. The en-

hancedmixing propertiesof non-circular jets makethem attractive componentsfor

fuel-injection and high-speedcombustion. A number of recent experimental investi-

gations have been conducted to examine the properties of non-circular jets 2-s At

low Reynolds number an elliptic jet develops in an unusual fashion as the major

and minor axes of the jet switch several times with downstream distance. This may

be associated with the mutual interaction of adjacent elliptic toroidal vortices. At

high Reynolds number the number and location of any axis-switching remains un-

clear. However, in this case, experience has shown that. the gross properties of the

large-scale structures in the turbulent mixing layer may be modeled as instability

waves. This approach has led to a betler understanding of jet mixing noise radia-

tion in high speed jets 9 and the effecl of acouslic exci_,alion on the devetopmenl

of turbulent jets J°. Detailed comparisons between the predictions of instability-

wave models and turbulence in mixing layers lJ and wakes 32 have also been made.



Thus a knowledgeof the stability characteristics of an elliptic jet should provide a

description of the gross features of the large-scale structures in such a flow.

Crighton z3 examined the stability of an elliptic jet with a "top-hat" velocity

profile. He obtained some solutions for large eccentricity, in which limit the jet had

stability characteristics similar to those of a two-dimensional jet. Calculations for

a wide range of eccentricities for this vortex sheet representation were obtained by

Morris and Miller I. Their numerical results supported Crighton's asymptotic solu-

tions. However, the vortex sheet approximation is only valid in the low-wavenumber

limit. It indicates instability at all frequencies. The observed limited bandwidth of

unstable frequencies is determined by the finite width of the mixing region. Only

by using realistic mean velocity profiles can a most-unstable or neutral frequency

be obtained. Thus in the present paper the stability of an elliptic jet represented

by a continuous axial velocity profile will be considered.

A numerical method for the calculation of the stability characteristics of jets

of arbitrary shape has been developed by Koshigoe and Tubis 14. Their calculations

for an elliptic jet compared favorably with the earlier calculations of ref. 1. The

integral approach that the), use suffers from limitations in accuracy as will be shown

below. However, the technique does not depend on the separability of the stability

equations and is thus a very attractive approach.

In this paper the stability characteristics of elliptic jets are documented for

several eccentricities. The numerical solution requires the evalualion of modified

Mathieu functions for arbitrary complex argument. Both eigenvalues and eigenfunc-

tions are presented. In the next section the stability equation in elliptic cylindrical

coordinates and the asymptotic forms of solution that satisfy the boundary condi-



tions aredeveloped.The numericalevaluationof theseasymptotic solutions is then

described. The stability characteristicsof anelliptic jet in the initial regionare then

given. Finally, the relationship betweenthesecalculationsand the developmentof

a realistic elliptic jet is discussed.

Analysis

A jet flow is consideredissuing from an elliptic nozzle.

developed in elliptic

Cartesian system by:

The problem will be

cylindrical coordinates (p,8, z). These are related to the

z=a coshp cose

y = a sinhp sin0 (1)

X_Z.

The jet axis is aligned with the z direction and the axial mean velocity of the

jet W(p,8) is assumed to be a function of p and 0 only. This is the parallel flow

approximation of hydrodynamic stability. This assumption leads to the leading

order problem in a multiple-scales analysis to include the effects of flow divergence.

These effects are not considered in the present analysis.

A Poisson equation for the pressure is obtained by taking the divergence of the

momentum equation and using the equation of continuity. The resulting equation is

Iinearized about the mean flow. The velocity fluctuations are eliminaled in favor of

the pressure fluctuation using the ]inearized momentum equations. If the pressure

fluctuation is written in the form,

p(p,O,z,t) = f,(p,e)expti(,-,z -  t)l,

3

(2)



then the equation for j6 may" be written,

+ -h- a--#E + a-T

where fl = w - aW.

Icosh(2.) - cos(2e)] = o, (3)

If W is taken to be a function of the "radial" coordinate p only then a separab}e

form of solution may be sought. This separation is valuable in that highly accurate

stability calculations may be performed without excessive computation. However,

as wil] be seen below, this results in a link between the momentum thickness distri-

bution of the mean flow and the eccentricity of the jet which may not be physical}y

realistic.

If a solution for _5is sought in the form jfi = R(p)T(8) then T and R are found

to satisfy,

d:T

de--3- + I._ - 2qcos(20)lT = 0, (4)

d2 R 2a dW dR
and _ + 1%- 2qcosh(2p)]R = 0, (5)

dp2 fl dp dp

where q = -e2a2/4 and ), is a separation constant. In general q is complex.

Equation (4) is Mathieu's equation. Equation (5) is the Rayleigh equation in elliptic

cylindrical coordinates and reduces to the modified Mathieu equation in regions

where W is constant.

The solutions of eqn. (4) are of four types that are odd or even in 0 and with

period 7r or 27r. Details of the evaluation of the Mathieu and modified Mathieu

functions and their characteristic numbers are given in refs. 15 and 16. The no-

tation given by Abramovitz and Stegun l° is used in the present analysis. The

characteristic numbers were obtained numerically as the eigenvalues of the matrix



for the coefficients of the sine or cosine series of the Mathieu functions (see ref. 16,

eqns. 20.2.2-20.2.11). The series was truncated after 11 terms. This gave 8 dec-

imal places of accuracy for all the values that could be compared with tabulated

values ]¢. The modified Mathieu functions were obtained from a series of products

of Bessel functions (see ref. 16, eqns. 20.6.7-20.6.10).

Only certain combinations of these functions permit the physical boundary

conditions to be satisfied. These were determined by Crighton _s. In the ambient

fluid surrounding the jet the pressure fluctuation must vanish as p --_ oo. This }eads

to the following forms of solution.

_(p,0)-_ A ce2,+;(0) <3)

A se;,+r(8 ) (3)Ms2r+,(P)-

Mc (3) and Ms (a) are Mathieu-Hankel functions. If p = 0 the solutions are of period

_, if p = 1 the solutions are of period 2_T.

The interfoca] line p = 0 extends from (z,y) = (-a,0) to (a,0). If the pressure

and velocity components are to be continuous across the interfocal line then the

solution for _(p, 0) for small p must take the form,

B (7)= B se2,+ (0) Se2,+,(o).

This gives the asymptotic form of the solution within the potential core of the jet.

Crighton 13 considered the case of a vortex-sheet representation of the jet flow.

That is,

{Wo for p <pc,, (8)W(p) = 0 for p > pc,.

Continuity of pressure and particle displacement at the vortex sheet requires that,



where A[ ] denotes the change across the discontinuity. Application of these condi-

tions for the forms of solution given by eqns. (6) and (7) leads to a set of dispersion

relationships. For the even modes these take the form,

, (3)

(3) ,
Ce r+p(p0)Mc2,+ (p0)

1 °W° 1:= , (10)

where primes denote differentiation with respect to p. A similar result may be ob-

tained for the odd solutions. Crighton 13 obtained asymptotic solutions for these re-

lationships for large eccentricities. Morris and Miller I solved eqn. (10) numerically

for a wide range of eccentricities. They showed that as the eccentricity increased the

growth rates of the even modes decreased but those of the odd modes, in particular

2r + p = 1, increased. This could be interpreted to mean that as the jet's eccentric-

ity ificreases the preferred mode would switch from being in phase around the jet, -

such as the axisymmetric mode in the round jet, to being out of phase about the

major axis, such as the antisymmetric mode in the two-dimensional jet. Itowever,

these conclusions should only be valid at very low frequencies in a real jet. These

deficiencies are addressed below where a mean velocity profile with finite thickness

is considered.

Calculations

The mean velocity profile

The mean velocity profile considered is analogous to that chosen by Michalke 17

to describe the initial mixing region of a circular jet. For 1he elliptic jet the profile

is taken to be

W (p) _ I
-- k I[ 17

O<p<__p,

+tanh{B(1- sinhp/sinhpo)/2OB}] for p > p,
(_)

6



A and B are the lengths of the semi-major and semi-minor axes of the ellipse

defined by p = P0 and 8B is the momentum thickness along the minor axis given

by,

w(1-W)du : (,2)

In eqn. (12) p, is chosen such that tanh{B(1-sinhp,/sinhpo)/20B) is close to

unity and p0 is the half-velocity point. Since the minimum valt,, of p is zero

this condition can be met if OB/B is sufficiently small. The velocity profile given by

eqn. (11) reduces to Michalke's 17 profile in the case of a circular jet. The profile was

chosen by Michalke on the basis of comparison with experimental data rather than

being a solution of the equations of motion. As such it is a local representation,

consistent with the parallel flow approximation of the stability analysis. Axial

variations are included parametrically through the dependence of 8B and B on z.

The validity of this choice of profile may be seen by comparing with the experimental

data of Ho and Gutmark 8. Figure 1 shows a comparison made at two axial locations

z/Ao = 0.5 and 2.0, where A0 is the semi-major axis length at the jet exit. The

local values of A/B based on the locations of the half velocity points are 1.88 and

1.49 respectively. The corresponding values of OB/B were found to be 0.044 and

0.223. The agreement between the analytical profile and the experimental data is

reasonably good except in the inner part of the mixing region along the minor axis

for the downstream location.

The momentum thickness along the major axis is defined by

OA = t4"(1 -- 14:)dz : y = O.

It can be shown that,

AO,_ = BOBI] + terms of order (OB/B)2].

(13)

(14)



Thus as the eccentricity of the jet increases the momentum thickness on the minor

axis becomes greater than that on the major axis. This is a consequence of requiring

that W be a function of p only so that a separable solution can be obtained. In

practice this linkage between eccentricity and momentum thickness ratio will not

exist. In that sense the profile is somewhat unrealistic, t-lowever the benefits of

obtaining highly accurate solutions to the separable problem are felt to justify the

present approach.

Numerical method

The Rayleigh equation (S) was solved numerically using a variable step-size

Runge-Kutta algorithm (IMSL routine DVERK modified for complex arithmetic).

For a given value of frequency and initial guess for the wavenumber two integrations

were performed starting from pl and P2, at which W "-- 0.001 and 0.999 respectively,

toward the center of the mixing region. The starting conditions were based on the

asymptotic solutions (6) and (7). The resulting numerical solutions at p = Po are

denoted by Rl(po) and R_(po). The two solutions and their derivatives much match

at p = po, that is;

(po)- C2R2(Ro)= 0
(15)

c, R',(po)- (po)= o

If eqn. (15) is to have a non-trivia] solution for C_ and C2,

V(w,a) = R1(po)R_(po)- R'l(po)R2(po ) = O. (16)

Newton's method was used to find the zeroes of V(w, a) and hence the eigenvalues

O..

Calculations were performed for both odd and even modes about the major axis

with periods _ and 2r,. The variables were non-dimensionalized with respect to the



jet exit velocity, the radius of a circular jet of equalexit area Av/_ and the uniform

density. Unless stated otherwise all ca{culatiox_s were for a momentum thickness on

the major axis of 8A = 0.02. However, it should be remembered that the momentum

thickness on the minor axis varies according to eqn. (14). Calculations have been

performed for three eccentricities: A/B = 1.001, A/B = 2.0 and A/B = 4.0. The

first case permits comparison of the results with the circular jet case. The areas

within the contours of p = Po, which are the contours of the half-velocity points,

were held constant.

The ceo mode

The ce0 mode corresponds to the axisymmetric m = 0 mode in the circular jet

case. Figure 2 shows the axial growth rates _; for the ce0 mode as the eccentricity

changes. The results for A/B = 1.001 are very close to the circular jet results is

The maximum growth rate decreases as A/B increases. However the frequency for

the maximum growth remains nearly independent of eccentricity. Table I gives this

frequency and the corresponding wavenumber for several modes and values of A/B.

If the frequencies for maximum growth are non-dimensionalized with respect to the

major axis momentum thickness OA the values for wm,_xSA are 0.109, 0.113 and 0.113

for A/B = 1.001, 2.0 and 4.0 respectively. This suggests that the initial shedding

frequency is controlled by the minimum momentum thickness, along the major axis

in the present case, and is nearly independent of eccentricity. This is confirmed by

the measurements of Husain and Hussain _ and Gutmark and Ho 3'4. In the former

experiments the momentum thickness was nearly independent of azimuthal position

whereas in the latter experiments OB = 0.80A.

Figure 3 shows the variation of the phase velocity with A/B for the ceo mode.

9



For A/B = 1.001 the mode exhibits phase velocities greater than the exit velocity

that were discussed by Bechert and Pfizenmaier I_. In general, increasing the eccen-

tricity makes the phase velocities less dependent on frequency. Table ] shows that

the phase velocity for wmaz increases with increasing A/B.

In the round jet, the amplitude of the azimuthal modes are independent of the

azimuthal location. However the behavior of modes for the elliptic jet is different.

Firstly, as discussed further below, the modes are not "spinning" but have a fixed

phase reference to the major or minor axes. Secondly the azimuthal variation is

determined by the behavior of the Mathieu function that is the solution of eqn. (4).

As A/B approaches unity q approaches zero, since a goes to zero. Then the solutions

to eqn. (4) are either sines or cosines. However for larger values of A/B, q is a

complex number with phase determined by the comp}ex wavenumber a. In this

case the amplitude of the ce0 mode is no longer independent of azimuthal location.

Figure 4 shows the azimuthal variation of IT(0)I for the various eccentricities for

the maximum amplifying frequency in each case. For A/B = 1.001 the amplitude

is nearly independent of 6. This is the axisymmetric mode behavior for the round

jet. For A/B = 2.0 and 4.0 the amplitude decays rapidly away from the major axis

and is essentially zero on the minor axis. This would indicate that close to the jet

exit the pressure and velocity fluctuations associated with the ce0 mode would be

greatest near to the major axis. However, because of the form of velocity profile

chosen this is also the location of the minimum momentum thickness. For uniform

momentum thickness around the je1 exit it is not clear that this behavior wou}d be

seen. The variation of R(p) with eccentricity is shown in Fig. 5. The distribution

is plotted along the major axis relative to the half-velocity point and stretched by

the major axis momentum thickness tk_. The distributions, plotted in this way, are

I0



nearly independent of eccentricity.'. Thus those motions observed in the round jet

will be duplicated in the elliptic jet except that the amplitude may vary azimuthally.

The ce2r modes

In addition to the ceo mode there are other even modes of period 7r that are

unstable in the initial mixing region. Figure 6 shows the axial growth rates for

these ce2r modes for r = 0, 1 and 2 for A/B = 1.001. From this figure and

the numerical values given in Table ] it is dear that the higher-order modes have

similar but smaller growth rates than the ce0 mode. The azimuthal variation of

these modes for A/B = 1.00l is given approximately by cos(2r0). The ce2 mode

corresponds to the n = 2 double helix in the round jet calculations of Mattingly

and Chang 2°. However it should be emphasized that all the .modes in the elliptic

jet case are phase-locked with respect to the major and minor axes and are not

spinning modes. This means that any jet that deviates slightly from axisymmetry

in the mean is ]ike]y to exhibit "flapping" rather than spinning modes.

Koshigoe and Tubis 14 have also calculated the stability of these higher-order

modes. However the accuracy of their technique, designed for non-separable prob-

lems, is limited by their two-dimensional grid. In the present calculation the solu-

tions are analytic in the azimuthal direction and use a variable step-size to achieve

a prescribed accuracy in the "radial" direction. However, in spite of the relatively

crude nature of their grid, the results in ref. 14 show all the qualitative character-

istics of the present results.

The se_ mode

The modes that reduce to the helical, n = 1 mode in the round jet. case are

the sel and cel modes. The)' have azimuthal variations that reduce to sine and

11



cos8 respectively. The variation of the axial growth rates for the sel mode for

various eccentricities is shown in Fig. 7. For A/B = 4.0 the maximum growth rate

for the sel mode is s]ight}y less than that of the ceo mode. The most-amplifying

frequencies for the se_ mode are also slightly lower than the ce0 modes. The value

of w,,_= falls from 0.1091 to 0.0704 (when scaled by the momentum thickness 8,_) as

A/B changes from 1.001 to 4.0. The phase velocities, shown in Fig. 8 are always less

than the jet exit velocity. For A/B = 1.001 the results agree closely with the values

for the n = 1, he]ica] mode in the round jet. At the most amplifying frequency the

phase velocities are approximately one half the jet velocity (see Table I). As the

eccentricity increases the phase velocities become tess dependent on frequency.

For q = 0, the round jet limit, the sej Mathieu function has its maximum

value at 8 = :t:1r/2. However for other values of q this changes. Figure 9 shows

the azimutba} variation of [T(8)I for various eccentricities. As was found in the ceo

mode case the amplitude falls to zero at the minor axis as the eccentricity increases.

Thus the pressure and velocity fluctuations associated with this mode will also be

greater close to the major axis (for the present choice of mean velocity profile).

The se2r+1 modes

The higher-order odd modes with period 27r, the se2r+l modes, exhibit an

interesting behavior. For real or sinai} q the characteristic numbers of Mathieu's

equation are readily classified. However, for complex q pairs of these characteris-

tic numbers are equal. The location of these branch points has been examined b v

Hunter and Guerrieri 2_. The asymptotic formulae used t.o calculate the characteris-

tic numbers changes as one crosses a branch cut that extends radially outward from

the branch point in the complex plane (see Fig. 4, ref. 21). Across these branch cuts

12



the characteristic numbersexchangetheir order. This ]eadsto an unusual behav-

ior for the se2_+lmodesfor higher eccentricities. The characteristic numbers and

the associatednormal modesmay be classified initially according to the eigenvalue

sequence provided by the IMSL routine. Figure 10 shows the complex value of

c = w/cr for the first four characteristic numbers in the sequence. The e{genvalues

fall into several groups. There are three continuous sequences associated with the

second and first, third and second, and fourth and third characteristic numbers.

There is clearly another sequence with a different behavior in the c-p}ane that has

contributions from all the characteristic numbers. This sequence could be thought.

of as indicating an "irregular" mode, though it does not have the same features as

the irregular mode described by Michalke 22. In the present case the higher-order

odd modes have been classified by number if they fal] into the smooth sequences

shown in Fig. 10 or as irregular if they do not. This leads to the axial growth rates

and phase velocities shown in Figs. ll and 12 respectively for A/B = 2.0. The may

imum growth rate is still associated with the sel mode. All the modes have similar

phase velocities in the range 0.5 to 0.8 and the dependence on frequency decreases

as the mode number increases. Though it appears likely that the appearance of the

irregular mode is associated with the branch points of the characteristic numbers

of Mathieu's equation, the mode-switching does not always occur near the branch

cuts identified by Hunter and Guerrieri 21. So the appearance of the irregular mode

remains unexplained.

The ce2,,1 modes

The ce2r÷l modes are even about the major axis and have a period 2r. They

may be identified with a flapping motion about the minor axis in the elliptic jet.

Thecel mode corresponds to the rt = l, helical mode in the round jet. From Table

13



1 it can be seenthat the cel and sel modeshave almost identical characteristics,

approachingthe n = 1, helical mode values, as the round jet limit is approached.

The cel and sel modes behave very similarly as the eccentricity changes with the

exception that the frequency of the most-amplifying mode is nearly independent

of the eccentricity for the ce_ mode. In view of the similarity between the two

modes the growth rates and phase velocities are not shown but the most-amplifying

frequencies and wavenumbers are given in Table I.

Discussion

The present results, subject to the particular mean velocity profile, indicate that

no particular mode is dominant in the initial mixing region and that the stability

characteristics are controlled by the minimum initial momentum thickness, which in

the present case always lies on the major axis. In a given experiment the selection of

a particular mode will depend on external influences, such as intended or unintended

forcing or a feed-back based on the preferred mode of the entire jet flow field.

Michalke 23 and others have shown how the process of vortex pairing may be

simulated qualitatively using linear stability theory. Such calculations can describe

the initial mixing region of a low Reynolds number jet or an artificially excited

jet at higher Reynolds number. Consider the ce0 mode which corresponds to the

axisymmetric mode in the round jet case. In the preceding section it was shown

that the "radial" eigenfunctions for this mode were independent of eccentricity, see

Fig. 5. Thus the same processes observed in the round jel should occur in the

elliptic jet. However, in the elliptic jet the amplitude of these motions was seen

to be dependent on the azimuthal location. For the ceo mode the amplitude is a

14



maximum on the major axis and falls rapidly to zeroon the minor axis. Thus it

could bespeculatedthat a vortex roll-up wouldoccuron the major axisbut nosuch

motions would be seenon the minor axis. Suchvortex motions, which resulted in a

switching of the jet's major and minor axes,wereobservedby Husain and Hussain2

and Gutmark and Ho6. However,theseprocessesoccur in regions where the jet is

developing rapidly and the thicknessof the mixing layer is increasing.

The primary purposeof this paper has been to establish the stability character-

istics of a non-circular jet. The choice of mean velocity profile enabled the stability

equation to be separated so that highly accurate solutions could be obtained to the

resulting ordinary differential boundary value problem. The particular choice of

velocity profile resulted in an initial momentum thickness that. varied around the

jet, being a minimum on the major axis and a maximum on the minor axis. This

situation could be different in a given experiment, as it was in the measurements

of Husain and Hussain _ and Gutmark and Ho 3. However the results given in the

preceding sections should serve as a test of the accuracy of numerical methods that

describe the stability of jet. flows of arbitrary shape.
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Mode
A/B _ma× _real aimag

ceo

ceo

ceo

ce2

ce2

ce4

sel

se!

sel

Be3

eel

cel

ce2

1.001 5.4413 10.1992

2.0 5.6578 10.1355

4.0 5.6518 9.0558

1.001 5.4949 10.3593

2.0 4.4171 8.3818

1.001 5.6203 10.7420

1.001 5.4537 10.2381

2.0 5.0106 9.3223

4.0 3.5184 6.7366

2.0 3.9380 7.5734

1.001 5.4567 10.2432

2.0 5.6577 10.0272

4.0 5.6517 9.0556

-5.6852_

-4.5074_

-2.5470/

-5.5483/

-3.15671

-5.1763z"

-5.6491z

-3.6778i

-2.2132/

-2.7856i

-5.6517z

-4.5074z

-2.54707

Table I. Frequencies and wavenumbers for maximum rate of growth.

2O



Captions

Fig. 1 Comparison of eqn. (11) with experimentaldataS: z/Ao = 0.5, O , major axis,

O , minor axis; z/Ao = 2.0, Q , major axis, _ , minor axis. Equation (11),

, A/B = 1.88, OB/B = 0.044; , A/B = 1.,19, OB/B = 0.223.

Fig. 2 Variation of axial growth rate with frequency for the ce0 mode.

, A/B = 1.001; , A/B = 2.0; , A/B = 4.0. 8A = 0.02.

Fig. 8 Variation of phase velocity with frequency for the ce0 mode. For legend see Fig. 2.

Fig. 4 Azimuthal variation of the amplitudes of the most unstable ceo eigenmodes. For

legend see Fig. 2.

Fig. 5 Distributions of most unstable ce0 eigenmodes along the major axis. For legend

see Fig. 2.

Fig. 6 Variation of axial growth rate with frequency for the ce2, modes.

, r = 1; , r = 2. A/B = 1.001, 8A = 0.02.

,r=0;

Fig. 7 Variation of axial growth rate with frequency for the sel mode. For legend see

Fig. 2.

Fig. 8 Variation of phase velocity with frequency for the sel mode. For legend see Fig. 2.

Fig. 9 Azimuthal variation of the amplitudes of the most unstable sel eigenmodes. For

legend see Fig. 2.

Fig. 10 Eigenvalues in the c-plane for different characteristic numbers of Mathieu's equa-

tion. Eigenvalue sequence number. 1:3 . l O . 2: & . 3: O .-1.

Fig. 11 Variation of axial growth rate wiIl_ t,,.,,,,.i1,, {..' ,t ..... _,, i ll_odes.

r = O; , r = 1; .... , r = 2;CP---"-_ irregular mode. A/B = 2.0, 0A = 0.02.
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Fig. 12 Variation of phase velocity with frequency for the se2,+1 modes. For legend see

Fig. 11.
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Appendix II

A Linear Shock Cell Model for

Jets of Arbitrary Exit Geometry

P. J. Morris, T. R. S. Bhat, and G. Chen





Abstract

The shockcell structure of single supersonic non-ideally expanded jets with

arbitrary exit geometry are studied. Both vortex sheets and realistic mean profiles

are considered for tile jet shear layer. The boundary clement method is used to

predicl the shock spacing and screech tones in a vortex sheet model of a single

jet. This formulation enables the calculations to be performed only on the vortex

sheet. This permits tile egicient and convenient study of complicated jet geome-

tries. Results are given for circular, elliptic and rectangular jets and the results are

compared with analysis and experiment. The agreement between the predictions

and measurements is very good but depends on the assumptions made to predict

the geometry of the fully-expanded jet. A finite difference technique is used to ex-

amine the effect of finite mixing layer thickness for a single jet. The finite thickness

of the mixing layer is found to decrease the shock spacing by approximately twenty

percent over the length of the jet potential core.



1. Introduction

There have recently beenconsiderableadvancesin our understanding of su-

personic jet noise. Tile resultsof this work are well summarizedby Tam [1]. In

this paper heshowshow the variousmechanismsfor noisegenerationin supersonic

jets may be related to the turbulencein the jet shearlayer and its i1_eraction with

the nearly-periodic shockstructure of the jet. The contribution to the noise ra-

diation from the turbulencealone,usually referred to asjet mixing noise,may be

modelledas the radiation of soundby instability wavesfollowing the work of Tam

and Morris {2], and Tam and Burton [3, 4]. The interaction of the instability waves

with the periodic shock-structure can result in screech tones as shown by Tam I5].

The broadband shock noise is associated with the interaction between the random

turbulence in the jet shear layer and the shock structure. The important features of

the random turbulence may be modelled as a random superposition of the normal

modes of the jet shear layer, Tam and Chen 16]. These normal modes are simply

the solution of the Orr-Sommerfeld equation with mean flow properties given by

the jet velocity and temperature fields. The success of this model and prediction

scheme is remarkable in its ability to predict both the near and far pressure fields

of the jet.

With the exception of reference 5, Tam's work has dealt with jets with a simple

geometry. However recent interest has focussed on the behavior of non-circular jets

[7-11]. Such jets have enhanced mixing properties. This is important in turbu-

lent combustion, particularly at high speeds, and for jet exhaust plumes. Nearly

rectangular nozzles have important uses in STOL applications for lift control and

vectored thrust.



In this paperweconsidersupersonicjets issuingfromjet nozzleswith arbitrary

cross-sections. As noted above, Tam and co-workers have shown that both the

large-scale coherent structures and the shock structure of jets may be modelled

using a wave analysis. The essential difference between tile two cases is that the

former are travelling waves while the latter may be modelled as stationary waves.

This means that we are concerned with solving the equations of hydrodynamic

stability in which the coeIficients depending on the mean flow are arbitrary functions

in a plane normal to tile jet axis. Calculations of the stability of non-circular jets

have also been performed by I_osbigoe and Tubis I12. J3 t and Morris 1141. In the

former a Green's function approach was used and in the latter the mean velocity

profile for the elliptic .jet was chosen such thai, separable solutions could still be

obtained in elliptic cylindrical coordinates.

We will assume that the mean flow properties are slowly-varying functions of

the axial distance. Tam, Jackson and Seiner I151. showed that the effect of the slow

axial variation could be accounted for using the method of multiple scales, but that

the differences in the predicted shock-structure with and without this effect were

small. Thus we will assume that the mean flow is locally parallel.

In this paper the shock cell structure and screech tones of a single supersonic

jet with arbitrary exit geometry are addressed. The jet mixing layer is modelled

by both a vortex sheet and realistic continuous velocity and density profiles. In

the former case the area of the vortex sheet cross-section is taken to be that of the

fully-expanded jet. This is a jet in which the mass flux is equal to that at the jet exit

but the pressure has been equalized with the ambient. This is an approximation,

even for the small pressure differences considered in the present case. However, a

sample calculation for the two-dimensional jet using linear pressure/turning angle

t)



relationships showed that the vortex sheet had an average location given by the

vortex sheet location for the fully- expanded jet. Though the analysis developed

in the next sections could be applied to segmented exit geometries, such as tile

multitube configuration, the rapid development of the flow in such cases would

diminuish the validity of the model.

It has been found that the boundary element method is a valuable tool for the

study of jets of arbitrary geometry represented l_y a vortex sheet. Other numerical

methods have been employed to consider the ca._es where the jet mixing layer has

finite thickness. In the next section the the analytical development is given for both

representations of the .iet. This is followed by the calculations and comparison with

experiment.



2. Analysis

A typical cross-sectionof a singlejet is shownin Fig. 1. The flow may be

divided into threeregions.In regionsI and[II tile meanflowpropertiesare constant.

These regions correspond to the potential core of the jet and the ambient fluid

surrounding the jet, respectively. Region II represents the annular mixing region in

which the mean velocity and density of the jet vary.

As a first approximation a linear shock cell model can be developed in which the

mixing region of the jet is represented by a vortex sheet. Such a model was used by

Tam and Tanna {161 in the circular jet case and Tam Is1 for arbitrary geometry jets.

The next approximation accounts for the finite |,hickness of the mixing layer and

the variation in the mean flow properties. To solve these two problems two methods

have been developed. The vortex-sheet problem is analyzed using the boundary-

element method. The finite thickness case is solved using a finite-difference solution.

The analysis for these two techniques is given in this section.

2.1 Vortex-Sheet Shock Cell Model.

The formulation of the problem is the same as that given by Tam [5], and will be

outlined briefly, However Tam used an eigenfunction expansion method to analyze

the arbitrary geometry problem. Such an approach is well-suited to problems in

which the vortex-sheet conforms to a coordinale line in an orthogonal coordinate

system such as the circular, rectangular or elliptic jet. Tam gave solutions to the first

two cases and for the elliptic jet in the limiting cases of nearly circular and highly

eccentric geometries. However such a method is not suitable for more complicated

geometries. Thus in the present analysis the solution is based on the boundary

element method. However the eigenfunction expansion method is used in the present



paper to find the solutions in the elliptic jet casefor an),eccentricity. Theseresults

are usedto verify the boundary elementcalculations.

Consider a shockcell system in a jet column boundedby a vortex sheet as

shown in Fig. 2. For convenience,a Cartesiancoordinatesystemcentered at the

nozzleexit with the x-axis in the direction of the jet centerline will be used. The

surface of the vortex sheet bounding the fully-expanded jet is given by So(y,z) = O.

There is no disturbance outside the jet. The linearized equations of motion inside

the vortex sheet are:

Op
,,v .,, + uj_ = 0. (2.1)

Ov

pjvj_ = -v,, (2.2)

, : ._,. (2.3)

pj, uy and aj are the density, velocity and the speed of sound of the fully expanded

jet. p, p and v are the density, pressure and velocity associated with the linear

shock cell structure.

From eqns. (2.1) to (2.3) it is found that the pressure p satisfies the equation

• 2 02P
v_p- _j. _--_ : o, (2.4)

with p = 0 on the boundary ,qa(y, z) = 0 and, at .r = O, p = Ap insido fin(y, z) ==0

and v± = O. v± are the velocity fluctuations normal to the jet axis.

A general solution of the vortex-sheet shock cell boundary value problem can

be found by writing the pressure fluctuation as:

,(._,y,_) = ¢(y,_) ¢os(_). (2.s)

6



where k is an as yet unknown axial wavenumber. The equation for ¢(y, z) may then

be written

v 2,¢ + _2¢ = o. (2.6)

where

and

;_== (M}- 1);, (2.7)

with ¢ = 0 on So(y, z) = 0. This is an eigenvalue problcnl with k as the eigenvalue,

which is to be determined.

Consider an arbitrary domain as shown in Fig. 3 where the boundary is divided

intoN panels, c= _c(ol,a2) are the ]ocat]ons of the node points and a= a(bl,b2)

are the locations of the mid points of each panel.

Let F(x l Y) be the fundamental solution of the Helmholtz equation, i.e.

(v _,+ Z_)F(× l Y)= -_(_ - Y), (2.8)

where, x = (x_,z2) and y = (Y_,Y2) and x and y are arbitrary, and 6( ) is the

Dirac delta function. Then,

ill(I)
F(X lY)= 4 o (/31x - Y[)" (2.9)

Application of the divergence theorem and noting that ¢ satisfies eqn. (2.6) and is

zero on the boundary yields,

_¢(_') _-/s a¢(_----_)F(,,:, t6)da. (2.10)• ,,=o 0/1

7



Approximating O¢/Ou by a constant, say gi on each arc 1",, we obtain,

N

5e(o,/= s_z__0j=, r(_, _/do.

or,

where,

N
1

3=1

,,(/_) = fr,

In eqns. (2.10) to (2.13) i= 1,2 .... ,N.

(2.11)

(2.12)

F(_, I_) d_. (2.13)

The approximate eigenvalues/3 are obtained from,

detI#,.jlNx N = O, (2.1,1)

It now remains to set up the elements of the matrix P',s" When i = j the integrand

contains a singularity and so the evaluation of the integral in p,ij must be performed

carefully. We obtain:

u,(Z) = _ -5-- + -5- H,, --
(2.15)

where Li is the length of the panel on the arc /'i, and Ho and H1 are Struve

functions of order 0 and 1 respectively, that can be expressed as a series of Bessel

functions. When i# j 1,he integrand is smooth and lhe evaluation of the integral

in #iy may be obtained using Simpson's rule.

J r" [H},')(_I-,- _,I)

+4H,I')(,alo, --,I)+ H,I')(/31-, - _,+,I
.

(2.16)
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The eigenvalues are obtained by a local iterative scheme which is given by,

/7k+1 --: 3k -- 1/f(flk). (2.17)

where,

f(_k) = TrJ_-_(ilk);,'(3k)l, (2.18)

Tr denotes the trace of a matrix and a prime denotes the derivative of the matrix

with respect to ilk. This is Newton's method wriiten in a convenient form for matrix

operations. Thus the eigenvalues can be determined starting from an initial guess.

2.2 Continuous Mean Profiles

When region I! of Fig. I is of finite extent a numerical solution must be obtained

in the mixing region. The general form of separabh, solution for the fluctuating

pressure when the mean velocity and density are taken to be independent, locally,

of the axial distance is given by,

p(_,0,._,f) = _(_,0)exp[i(;¢._- _t)l, (2.19)

where w is the radian fl'equency and a polar coordinate system has been introduced.

The shock-structure may be associated with the zero frequency solutions, i.e. w = 0.

The pressure fluctuation is found to satisfy the non-separable form of the Rayleigh

equation [12},

02_) 1 Off 1 02fi 2k [OU Ofi

-g-gr2+-; _ + _ Oo---7+ (_o:kU) [ O_ O_

1, Otp 0_1 _ I.2t : -[k _ _ (_.,--krr)
r" O0 _j ' "

(2.2o)

For simplicity the flow has been assumed to be isothermal but the variations in

mean density may be readily included using a Crotch's relationship.
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For an arbitrarily shapedjet, U is a function of both r and O, Thus a separable

solution in r and 0 is not generally available and one resorts to a numerical solution

in region II. Along the interior edge of this region and ill region I, the potential core

of the jet, the mean velocity is a constant, Uj. In the ambient fluid surrounding the

jet the properties are also uniform. In this case we take the external velocity to be

zero. Thus on the boundaries between regions 1 and I1, and II and III, a separable

form of solution may be obtained and can be written.

OO

S-" A,_J,(iAjr) exp(inO), (2.21)I;3 = z_.,,

and,

where

and,

Cx__

_,,: v" B,jj2/(ia,,_)exp(i,0), (2.22)A_.,
r/=-- OO

a_ = k_- M](_- k_!,)2, (2.za)

_,_,= k_ - M:_ _. (z.24)

The subscripts 3" and 0 refer to the solutions in regions 1 and II1 respectively. J,_ is

the Bessel function of the first kind and order l_,, and H (li is the tlankel function

of the first kind and order _t.

For region II the solution may be obtained numerically using a finite differ-

ence scheme. The region is divided by N radial lines. If the mean flow possesses

symmetry about any coordinate directions the numerical integration need only be

performed in a limited sector. For example, if the mean flow is symmetric about

both the y and z axes the numerical integration is performed in the first quadrant.

This would be the case for the elliptic or rectangular jets. The derivatives with

10



respectto 8 in eqn. (2.20) are approximated by a three-point central difference for-

mu]a. Equation (2.20) then gives a system of coupled ordinary differential equations

for the values of fi along the radial lines, The vahms of 73along the bounding radial

lines depend on whether the modes sought are odd or even about the boundaries.

In the the former case fi is zero oll the boundary, in the latter case 0/3/00 is set to

zero.

The numerical solution is started at the interior boundary with one term from

a finite series of the form (2:21). The values of 77 are chosen to be compatible with

the modes sought. For example, , = 2rn for modes that are periodic in lr such as

the axisymmetric mode in the circular jet case. The solution is repeated for each

term in the series as the starting condition. A corresponding set of solutions is

started along each of the radial lines at the exterior boundary. The sets of solutions

are matched at some intermediate value of radius. For example along any radial

line at the matching point,

and

Z...,'V-"A,_,_I = E B./3,_,, , (2.25)
1'1 ?l

v" -, " (2.26)AnPnl = BnPnlI,
?7 7"l

where i5,,l and/_,_11 denote the numerical solutions started at the interior and exte-

rior boundaries respectively with starting conditions for the n-th term in the series,

and primes denote the derivative with respect to r. Application of these matching

conditions along each of the N radial lines gives 2N homogeneous equations for the

2N unknowns An and B,_. These equations may be written in matrix form. The

eigenvalue is obtained by minimizing the determinant of the resulting matrix.

11



3. Calculations

Calculation_ have beenperforlned for both the vortex sheet case and the jet

mixing layer of finite thickness. In tile former case lhe circular, rectangular, and

elliptic jets have been considered. Comparisons have been made between the pre-

dictions, analytical results and experimental data where possible.

3.1 Vortex-Sheet Shock Cell Model

Tile shock spacing is given by the wavelength Ao associated with the lowest

eigenvalue k. For a circular jet the ana!ytical result for fl, given by eqn. (2.7), was

given by Tam and Tanna 116]. It corresponds to the first zero of the Jo Bessel

function. To determine the accuracy of the boundary element method, calculations

were performed for the circular .jet case with various numbers of panels. The results

are given in Table I. The numerical result is within one percent of the analytic result

for 20 panels. Thus in all subsequent calculations the number of panels is fixed at

20 unless noted otherwise.

Tam and Tanna [16] noted that the dimensions of the vortex sheet to be used

when comparing with experimental data should be those of the fully-expanded jet

and not those of the jet nozzle itself. The ratio of the areas of the fully-expanded

jet and the nozzle may be obtained from one-dimensional isentropic flow formulas.

That is,

>10 Md + = -.-;
m=2Aa-2

2(_ -II

(a.1)

where Md and Mj are the nozzle design Ma.ch number and fully-expanded jet

Mach number respectively and Aa and A; are the areas of the nozzle exit and the

fully-expanded jet respectively. For a circular jet the ratio of the radius of the

12



fully-expanded jet to the nozzleradius is given by the squareroot of eqn. (3.1).

For non-circular jets further assumptionsmust be made. Tam [5] assumedthat

the jet expandsor contractsby anequalamountabout its perimeter. Approximate

formulasmay then be found for the dimensionsof the fully--expandedjet. For the

casesof therectangularandelliptic jets theseformulasareeqns. (2.42)and (2.43)of

reference5. Alternatively theshapeof the jet cross-sectioncould be assumedto be

unchangedin the expansionsothat tile ratio of the characteristicdimensionsof the

fully-expandedjet to the nozz]eis onceagaingivenby the squareroot of eqn. (3.1).

However, though without any conclusive experimental evidence, the mixing in the

initial mixing region near the nozzle might be more likely to move the jet to a more

symmetric form, i.e. a lower eccentricity in the elliptic case. This trend is given by

Tam's formulation, at least in the under-expanded case. This formulation has been

used mostly in the subsequent calculations. Itowever some predictions based on the

assumption of no change in tile .jet geometry have also been made. For the elliptic

jet the formula for the fully-expanded jet dimensions should be written correctly

a_:

+ 1, (3.2)

where Lj refers to the fully-expanded jet scales and Ld refers to the nozzle exit scale.

E(s) is the complete elliptic integral of the second kind and e: = (1-L_/L_), where

La and Lb refer to the semi-major and semi-minor axes of the nozzle.

For the elliptic jet the shock spacing is given by [51,

_ra_/(M 2 -1)/\ q/_,j. (3.3)

where qol is the smallest, root of the modified Mathieu function Cenm(go,qmn), and

.--- (3.4)
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where LA and LB are the lengths of the semi-major and semi-minor axes of the

fully-expanded jet. Tam 15] gave approximate values for the roots in the limits

of very small and very large eccentricity. Ill the present calculations tile roots

have been determined numerically using the Mathieu function routines described

by Morris [14]. These calculations confirm the asymptotic formulas given by Tam.

In addition calulations have been performed for all elliptic jet with nozzle axis

ratio L,4/LB = 2. This corresponds to tire nozzle used in recent experiments at

NASA Langley [171 . Figure 4 shows the calculated shock spacing as a function

of fully-expanded jet Mach number for the 2:1 elliptic nozzle. The design Mach

number of the jet is 1.5. The shock spacing is referenced to the semi-minor axis

of the nozzle. The numerical results (for N=20) agree well with the analytic result

given by eqn. (3.3) with the zeroes of the Mathieu function evaluated numerically.

It should be noted thai an axis ratio of 2:1 only occurs at the ideally-expanded

condition. For A4j = 1.l the fully-expanded axis ratio is 2.2278 and for M2 = 1.8

the ratio is 1.7753.

A relationship between the shock spacing in the jet and the screech tone fre-

quencies has been developed by Tam, Seiner and Yu 118} based on a "weakest link"

hypothesis. The screech tone frequency is given by the simple formula,

tt, ck 1

f" -- 27r(1 + uc/a_,)' (3.5)

where kl is the smallest wavenumber of the shock cell system, u_ is the convection

velocity of the excited large scale instability waves of the flow and ao¢ is the ambient

speed of sound. The same formula was developed by Powell {19] and Harper-Bourne

and Fisher [20] using a different model. In the calculations it has been assumed that

the convection velocity is 0.7. This assumption was found to be satisfactory in [18]
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though it may not begenerallyvalid. Thoughother valueshavebeenproposedfor

the convectionvelocity the present,choiceis an adequateapproximation. It should

benoted howeverthat the convectionor phasevelocity for the instability wavethat

achievesa maximum amplitude in the jet shearlayer may be calculated from the

stability analysis (for realistic meanvelocity and temperature profiles). Figure 5

comparesthe predictedscreechtone frequenciesfrom eqn. (3.5) with the measured

values. The smallestwavenumberwasobtainedfrom the boundary elementcalcu-

lations shownin Fig. 4. The agreementbetweenthe predictionsand measurements

is very good. It is interestingthat the experimentaldata,and the predictions ap-

pear to agreebest closeto tile designMach number. This would suggestthat the

discrepanciesbetweenthe predictionsand the experimentsare relatedto the choice

of dimensionsfor the fully-expanded jet. Preliminary measurements[17] of the

velocity profiles in the Mach 1.5,2:1elliptic nozzleat NASA Langleyindicate that

the ratio of the axes,basedon the half-velocity points, remainsconstant for the

first two potential core lengths. Also shownin Fig. 5 is the predictedscreechfre-

quencywherethe aspectratio of the fully-expandedjet is taken to be the sameas

the nozzle.The areaof the fully-expandedjet is given by the one-dimensionalgas

flow equations.The agreementbetweenthe predictionsand experiment is better in

this caseparticularly at the over-expandedconditions. It is not clear whether this

assumptionwould providebetter predictionsfor alt exit geometries.

The circular and elliptic jets havesmooth boundaries. As an exampleof a

casewith sharp cornersweconsiderthe rectangularnozzle. The analytic solutions

in this caseare obtained very easily using the eigenfunctioT1expansionapproach

and the formulas for the shockspacingand screechfrequenciesare given by Tam

15][eqns.(2.44) and (3.2)]. Figure 6 showsa comparisonbetweenthe numerical
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results for the shockspacingobtained usingthe boundaryelementmethod, Tam's

analytic results (basedon the assumptionof largeaspectratio), and Powell's [21]

experimental results. The agreementbetweenthe setsof data is quite reasonable.

For thesecalculations,in which the aspectratio of the jets is large, 34panelswere

used in the boundary elementcalculations.

Figure 7 shows a comparison of tile predicted screech frequencies using the

analytic and numerical results and the experiments of Krothapalli et al [22]. As

expected the agreement between the predictions and experiments is good. Once

again 34 panels were used in tile calculations.

It should be noted that at tile higher pressure ratios strong shocks exist in the

plume and the geometry of the plume changes with downstream distance. This

results in the eventual switching of the major and minor axes. The good agreement

between the predictions of the vortex sheet model and the measurements would

suggest that the fundamental wavelength of the jet is relatively insensitive to the

effects of finite mixing layer thickness, jet growth, and non-axiM velocity compo-

nents. This is also indicated by the calculations given in the next section.

3.2 Continuous Mean Profiles

As a demonstration of the effect of finite thickness on the shock spacing cal-

culations were performed for a circular jet. Clearly this case could be examined by

using the separable form of solution and integrating along a single radial line. In

fact this calculation has been performed to test the numerical accuracy of the gen-

eral scheme. However the purpose of the example was to test the general approach

and calculations for other geometries must await mean flow data at high speeds.
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The calculationswereperformedwith threeevenlyspacedradial lines in the

first quadrant. The meanvelocity profile wastaken to be,

(3.6)

where7?= (r - h)/b, h is tile potential core radius and b is the local half-width of

the jet mixing layer. The relationship between h and b may be obtained from an

integral form of the axial momentum equation (see for example, Tam and Morris

I23}). The jet was assumed to be isothermal. The integration of the system of

ordinary differential equations in the radial direction was performed using a fixed

step size fourth-order Runge-Kutta scheme with only 20 steps in the integration

region, 0 < r/ < 3.0. This rela.tively small number of steps appeared to be adequate

when compared with tile results using a variable step-size scheme that used several

hundred steps.

Figure 8 shows the variation of the shock spacing, based on the lowest wavenum-

ber, as a function of the mixing layer thickness. The jet Mach number Mj = 1.4.

The wavelength is relatively independent of the mixing layer thickness though the

shock spacing does decrease as the thickness increases. For small values of b the

spacing approaches that given by the vortex sheet model. Only the lowset wavenum-

ber associated with the axisymmetric mode has been sought. Higher axisymmetric

modes exist corresponding to the zeroes of the .],_ t3essel function in the limit of

the vortex- sheet. Tam, 3ackson and Seiner [151 showed that when the contribu-

tions from all these modes are superimposed a remarkably detailed prediction of

the pressure distribution, associated with the shock structure, may be obtained. A

similar result could be obtained with the present method for other jet geometries.

However, it should be noted that Tam et al's calculations included the dissipative
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effect of the shear layer turbulence through an eddy viscosity. This results in an

axial decay of the strength of the shocks. No such decay would be obtained with

the present formalism, ltowever tile inclusion of the viscous effects would simply

convert the equation satislied by the fluctuations from the Rayleigh equation to an

Orr-Sommerfeld equation and the numerical analysis would proceed in a similar

fashion.

The method developed in this section is being applied by the authors to other

more complicated geometries than tile circular jet. There are several modifications

to the numerical procedure which make the calculations more efficient in jets with

high aspect ratios. However the basic principle of matching the linearly independent

solutions along radial lines is the same as described here. These calculations will be

presented later. The present calculations have served to validate the basic technique

and also to demonstrate the magnitude of the effect, of finite mixing region thickness.

It can be seen from the present calculations that the vortex-sheet approach provides

a remarkably good prediction of the shock spacing when compared with the more

realistic results for the finite thickness mixing layer.
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4. Summary

This paperhasgiventhe R_)rmulationsfor the calculation o[ the shock cell spac-

ing of single jets of arbitrary geometry. Methods have been given for both vortex

sheet models of the jet shear layer and for continuous mean profiles. The vortex

sheet calculations for the single jet were performed using the boundary element

method. This enabled the shock structure to be predicted in jets of arbitrary ge-

ometry. Calculations have been given for circular, rectangular and elliptic jet cases.

The effect of finite mixiilg layer thickness on the shock spacing has been predicted

using a finite-difference solution in the mixing layer. The shock wavelength has

been found to reduce as the mixing layer thickness increases.
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Analytical value of/3 = 2.40,182

Number of panels /_11 It Illel'iC :l I

8 2.5866

12 2.4765

20 2.4287

30 2.4151

40 2.4100

Table I. Boundary Element Calculations for a Circular Jet.
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Figure Captions

Fig. 1. Sketch of Regions of .let Cross Section.

Fig. 2. Sketch of Vortex- Sheet Shock Cell Model.

Fig. 3. Sketch of Boundary Divided into Elements.

Fig. 4. Variation of Shock Spacing with Fully--Expanded Jet Mach Number for

Elliptic Jet. La/L_, = 2.0. -.... , present calculations, N = 20;* , analytic soution,

[51.

Fig. 5. Variation of Screech Tone Frequency with Fully-Expanded Jet Mach Number

for Elliptic Jet. L,,/L_. --- 2.0.----- , present calculations, N = 20; * , analytic

solution, [5]; /_ , experimental values, [17]; ..... , present calculations assuming

constant jet aspect ratio.

Fig. 6. Variation of Shock Spacing with Fully-Expanded Jet Mach Number for

Rectangular Jet. ----- , present calculations, bib = 5.83, N = 34; * , analytic

solution, [51; /X , experimental values, b/h = 5.83, [19].

Fig. 7. Variation of Screech Tone Frequency with Fully-Expanded Jet Mach Number

for Rectangular Jet. __I_ , h/h = 50/5, - - - - , b/h = 50/3, present calculations,

N = 34; * , analytic solution, 151;experimental results, 120l, A, b/h = 50/3, t-a,

b/h = 50/5.

Fig. 8. Variation of Shock Spacing with Mixing Layer Thickness for Circular Jet.

M3 = 1.4.
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Calculations are presented for the characteristics of instability waves in the

initial mixing region of twin circular supersonic jets. Two models for the basic

jet flow are used. In the first, the jets are modeled as two circular vortex sheets.

In the second, realistic velocity and density profiles are used. It is shown that

the unsteady flow fields of the two jets do interact before the time-averaged jcts

flows have merged. The normal modes or instability waves are classified by their

symmetry properties in the twin jet case and their asymptotic behavior for large jet

separations. Calculations of the growth rates and phase velocities are made for these

modes as a function of jet separation and mixing layer thickness. The associated

pressure distributions are also presented. In the realistic jet profile calculations the

effect of jet separation is found to be relatively weak. For modes that arc cvcn

about the symmetry plane between the two jets the pressure levels are found to

increase near this plane as the jet separation decreases.



1.0 Introduction

When supersonic jets from convergent-divergent nozzles operate at off-design

conditions they can produce intense screech tones. Powell (1953) made early ob-

servations of this phenomenon and proposed a feedback mechanism for the screech

tone production. More recent experiments and analysis by Tam, Seiner and Yu

(1986) showed that the feedback loop consists of downstream propagating large

scale structures in the jet mixing layer that interact with the shock cell structure

to generate upstream travelling acoustic waves. If these acoustic waves trigger ad-

ditional flow disturbances at the jet lip with the correct phase then the feedback

loop is established. Analyses, based on this model, have made excellent predictions

of screech tone frequencies in both circular and non-circular jets; see Tam (1986)

and Morris, Bhat and Chen (1989).

Seiner, Manning and Ponton (1988) showed experimentally that for two closely-

spaced supersonic jets, operating off-design, the dynamic loads associated with

the screech tone can reach levels, upstream of the jets' exits that could result in

structural damage. Tam and Seiner (1987) noted that the screech tone frequency

of the twin jets was slightly different to that of the single jet and that the acoustic

intensity in the inter-nozzle region exceeded that of the direct sum of two non-

interacting screeching jets. This suggests that there is a strong interaction between

the unsteady flow and acoustic fields of the two jets. The analysis and calculations

described in this paper help to quantify the effects of jet separation and operating

conditions on the nature of this interaction.

Turbulent mixing in free shear flows is controlled by the dynamics of large scale

coherent structures. The local characteristics of these structures may be described

by linear instability theory. This has been demonstrated by the experiments of



Gaster,Kit and Wygnanski (1085),and Petersenand Samet(1988) amongothers.

In their experimentsthey comparedpredictions of the amplitude and phaseof the

axial velocity fluctuations, basedon linear stability theory, with phase-averaged

measurementsin an excitedshearlayer and a jet. The agreementbetweenpredic-

tions and experimentwasvery goodthough only the local distributions and not the

amplitude werepredicted. This closeagreementbetweenthe predictions of linear

stability theory and the propertiesof the large-scalecoherentstructures has formed

the basis for theories of turbulent mixing and supersonicjet noise. For example,

Tam and Morris (1979),and Tam and Burton (1984a,b)predicted the noiseradi-

ation from instability wavesin supersonicshearlayersand jets and obtained very

goodagreementwith experiment.

For supersonicjets the threemain componentsof noiseradiation are, turbulent

mixing noise, broadbandshock associatednoise and screech. In each case, the

essentialcomponentof the turbulenceresponsiblefor noisegenerationare the large

scalestructures. It shouldbenoted that this is not the casefor subsonicjets where

a completetheory for noisegenerationand radiation is not available. Tam (1987)

showedhow predictions could be made for eachnoisecomponent in a circular jet

using an instability wavemodel for the largescalestructures.

In the presentpaper the propertiesof the instability wavesor large scaletur-

bulent structures in the initial mixing region of twin circular supersonicjets are

determined. Two models for the basicjet flows are used. In the first, the jets are

modeled as two circular vortex sheets. In the second,realistic mean velocity and

density profiles are used. Though the former model fails to provide quantitative

results it does help to explain the observedmodes of instability and interactions

predicted by the more realistic model. The calculations examinewhether the in-



stability growth rates, and hence the amplitudes of the large scale structures, are

modified as the jet separation and operating conditions vary. In addition, the cor-

responding changes in the instability wave phase velocity are predicted. It is shown

that the unsteady flow fields associated with the instability waves do interact be-

fore the time-averaged jet flows have merged. However, this interaction is relatively

weak for the operating conditions considered. In Section 2 the general equations of

motion and analytic solutions common to both models are developed. The details of

the vortex sheet model and its predictions are then described in Section 3. Section

4 contains the numerical procedures and calculations for the realistic jet profiles.

Finally, the role of these predictions in and their relationship to experimental ob-

servations of the twin plume resonance phenomenon are discussed.

2. ANALYSIS

Consider the two circular jets shown in Fig. 1. The time-averaged jet flows are

assumed to be symmetric about the x - z and x - y planes, where the x-coordinate

is normal to the jet exit planes. The centers of the jets are separated by a distance

2h. Throughout this analysis the variables are non-dimensionalized with respect

to the jet velocity u_, jet density P1 and jet radius a i. These values are taken to

be the fully-expanded jet properties as defined by Tam and Tanna 1_. These values

are described below. In the annular mixing regions of the two jets, before they have

merged, there are three flow regions. In region I, the potential cores of the jets, the

mean velocity and density are constant. Region III represents the stationary fluid

surrounding the jets. In region II, the annular mixing region, the mean velocity

and density _ are variable. Polar coordinate systems are introduced (r_,0_) and

(r2,82) with origins on the jet centerlines. The mean velocity and density of each

jet are assumed to be a function of their radial coordinates only. This is the locally-



parallel flow approximation. The potential coreshaveradii R1 and the outer edges

of the mixing regions have radii P_. The mean static pressure is assumed to be

constant. The large scale coherent structures are modeled as instability waves.

Their behavior is governed by the unsteady, linearized, compressible equations of

motion. Thus, for example, in either polar coordinate system separable solutions

for the pressure fluctuation are sought in the form:

p(_,t) = _(r)expli(k_+ _0- _t)], (2.1)

where k is an axial wavenumber, n is an azimuthal mode number, and w is a radian

frequency. The radial variation of the pressure fluctuation is then found to satisfy

the equation:

d2]5 + {
dr 2

where,

1 ld-fi

r -_ dr
2kd-_ d_ n=}_+-ffdr +{k=-  a=M:+7 =o, (2.2)

12 = w - k_,

and M] = u2j,/c2s' where c,. is the fully-expanded jet speed of sound. Equation (2.2)

reduces to Bessel's equation in regions of constant mean velocity and density.

A solution for the pressure fluctuations outside the jet mixing layers in region

III may be obtained in either polar coordinate system in the form

p(r,O,z,t) = _ B,,H{,'l(i_or) exp[i(kx-wt+nO)l , (2.:3)

n=--oo

where,

_o= (k_-Z0_M_}, _.

Po is the non-dimensional mean density in the ambient medium which is equal to

the jet static temperature ratio, Tj/To. The branch cuts for ,_0 are chosen such



that,
1 1

--r _< arg Ao < -_.
2 2

This ensures that the solutions decay as r ---, oo or are outgoing waves, for positive

frequency.

example,

The symmetry properties of the mean velocity and density field, for

= =

indicate that the eigensolutions should be odd or even about the x - y and z - z

planes. From the latter symmetry property (the former symmetry property is used

below) the general solution for the pressure fluctuations in the outer region may be

written,
OO

= F_, B.

+ H (_) (iAor,)e '"("-°') } expli(kx - wt)l,

(2.4)

where the choice of sign depends on whether the solution is to be odd or even about

the x - z plane of symmetry.

It should be noted that this solution does not just represent the sum of the

contributions from two, non-interacting, individual jets, though the form could then

be the same. It is simply a convenient form of the separable solution in the outer

region. The influence of the second jet is included when this general form of outer

solution is matched with the solution in the interior of each jet. In the present case

the fluctuations in each jet are affected not only by the outgoing solutions, that

would exist for an individual, isolated jet, but by the incoming solutions from the

second jet. These two contributions are included in the outer solution (2.4)

In order to match the outer solution (2.4) with the pressure fields in regions I

and II it is convenient to write the solutions in region III in terms of only one of



the two polar coordinatesystems.This may beaccomplishedusing Graf's Addition

Theorem [see,Tranter(1968)]. For example,wemay write,

H_,l(iXor_)e,,,(,_-o,l= _ H ¢ll,,+o(2iXoh)J`(iXor2)e '°°' (2.5)

Then (2.4) may be written,

where,

and 5°, is the Kronecker delta function. It should be noted that

(2.7)

__,._, = (-i)'_.,., (2.s_)

and,

°.. = 1 ' .. (2.8b)_- (-) _.,-

The influence of the second jet is seen in (2.7). The first term on the right

hand side represents the outgoing waves from the jet at y -- -h. The second term

represents the incoming waves from the jet at y = h. For large h this latter term is

very small and the interaction between the jets is very weak

The normal modes for the pressure fluctuation given by (2.6) may be separated

further into modes that are odd or even about the x-y plane. This is accomplished

by first setting s = -s and n = -n and adding the resulting equation to (2.6). Then

the pressure fluctuation may be written,

p(r2,02)= _ F°cos(nO2)+iG, sin(n02) /3..(iXor2), (2.9)
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where,

F, = [Bo + (-1) ° B-.I/2, (2.10a)

and,

G. = lB. -(-1)'B_,I/2, (2.10b)

A similar solution may be found for the pressure fluctuations in the potential core

region. This may be written,

n_mO0

where,

_ =k__ (__ k),_. (2.12)

With the form of the solutions known inside and outside the jet the eigenvalues k

may be determined by matching these solutions at either the vortex sheet location

or through the finite mixing layer. The former matching is described in the next

section.

3. VORTEX SHEET MODEL

3.1 Analysis

In this representation of the jet flows the finite mixing layers are replaced by

cylindrical vortex sheets of unit non-dimensional radius. Across the vortex sheet we

require continuity of pressure and particle displacement. The matching conditions

require that,

[ep/dr2]zxL _fl= = 0 and Zx[p]= 0, (z.1)

where A[ ] denotes the change in the argument across the vortex sheet. If the

interior solutions given by (2.11) are matched with the exterior solutions, (2.9) for



all n we obtain, for the solutions that are even about the x - y plane,

n _ --IX?,''',_,

(3.2)

where,

Z:.(_) _..H_I_'(_)+_ ('_ (2i_0h)J'(_) (3.3)

If we use the symmetry properties of 15o,, given by eqns. (2.8), and note that,

F. = (-1)'__., (3.4)

then the independent equations yielded by (3.2) may be written,

Hn -- $

,----1

+Fo .=o, ,oo,
(3.5)

where,

H"_') (iA°)- h"H_l)'(iA°) (3.6)
r. = JoCi_o)-A.J'.(i_o)

and,

A. = (_ - _)__oJ. (i_,) (3.7)
_o_ _, J,.(i),,)

In the numerical calculations the series is truncated at s = N and then (3.5) yields

a set of N+ 1 homogeneous equations for F,. These may be written in matrix form,

[A]F= 0, (3.8)

where F is a vector of length N + 1 of the unknown coefficients F,. For a non-trivial

solution to exist the determinant of this matrix must be zero. This provides the

dispersion relationship between the wavenumber and frequency.

8



A similar set of equationsmay be derived for the unknown coefficientsin the

seriesrepresentingthe solutions that areodd about the x - y plane. These may be

written,

Fo ---=(-1)'F_ ,, (3.4)

then the independent equations yielded by (3.2) may be written,

ll_-I

n----O, 1,"" ,00.

The requirement of a non-trivial solution for G, results in a dispersion relationship

for the odd modes about the x - y plane.

A similar expression to both eqns. (3.5) and (3.9) was obtained by Sedel'nikov

(1967). He developed dispersion relationships for multilayer jets, several jets, and

jets between parallel walls or in rectangular ducts. In each case the jet was repre-

sented by a vortex sheet. No roots of the dispersion relationship were determined.

Written in the form of eqns. (3.5) and (3.9) the off-diagonal elements vanish for

large jet separations and the eigenvalues are the zeroes of F,. These eigenvalues

correspond to the axisymmetric and helical normal modes of a single jet.

It is clear that this form of the equations does not hold for zero frequency. This

case is of interest, as it may be used in a description of the shock cell structure of the

jet. Tam and Tanna (1982) showed how a model for the shock cell structure could

be posed as an initial-value problem in which the fully-expanded vortex sheet acts

as a waveguide for the pressure perturbation at the jet exit. For the steady problem

the matching conditions at the vortex sheet require that the pressure perturbation

be zero at and outside the vortex sheet. Thus there is no communication between

the two jets and the shock cell structure remains unchanged from the single jet case.

9



However,it should be noted that this is only true for jets into stationary air and

some coupling between the steady shock cell structure could occur if the ambient

air were in motion; see Morris(1988).

3.2 Calculations

There are many parameters and operating conditions that could be varied for

the present configuration. Thus, the calculations have been limited to a set of

operating conditions that correspond to available experiments. In the calculations

for both the vortex sheet and the realistic mean profile representation of the jet

the diameter of the jet is taken to be the fully- -expanded jet diameter. It may be

argued, that in either the case of an over- or under-expanded jet, the jet plume

will adjust its cross-section so as to preserve mass flux but equalize the mean static

pressure. This gives the following relationship, assuming isentropic flow, between

the fully-expanded and design jet dimensions.

M_. 1 ÷ ---C-'"d (3.10)
r d _ _ ,

I+ M?

where rd is the non-dimensional design jet radius and M_ and Md are the fully-

expanded and design jet Mach numbers respectively.

The instability wave calculations in the vortex sheet case provide an indication

of the character of the results to be expected in the more realistic calculations that

include the effects of finite mixing layer thickness. Four types of solution may be

classified as shown in Table 1. In addition, each solution may be classified by the

azimuthal mode number it appro_hes as the jets move further apart.

Figure 2 shows the variation of the axial growth rate, -k_ as a function of

the separation distance between the two jets' centerlines h. The instability wave

frequency is 1.0 in each case. This corresponds to a Strouhal number of 0.318,

10



(1/Tr),basedon the fully--expanded jet diameter and velocity. The design and fully-

expanded jet Mach numbers are 1.0 and 1.32 respectively and the jet is unheated.

These conditions correspond to the experiments of Seiner, Manning and Ponton

(1988). In the numerical evaluation of the dispersion relationships obtained from

(3.5) and (3.9) a value of N = 5 was used. Calculations were also performed with

N = 9 with no significant change in the calculations, even for small values of jet

separation. For large separations the solutions approach those for the single jet and

the growth rate increases with azimuthal mode number. Calculations are presented

for mode numbers 0, 1 and 2. For a given mode number the most unstable mode

type is a function of jet spacing. For example, consider the mode number 1. For

h > 1.6 the type III mode is the most unstable, though its value does not differ

greatly from the value at large h. For h < 1.6 the type I mode dominates. For

the range of mode numbers and types considered, the mode number 1, type I mode

appears to be most affected by small separations showing a large increase in axial

growth rate. This mode is associated with a motion that is even about both x - y

and x - z planes and is dominated by a pair of helical motions of opposite sense

about each jet. This is the type B mode described by Seiner, Manning and Ponton

(1988) which they found to be the dominant mode in their twin plume resonance

experiments.

The prediction that the stability of the (1,I) mode is affected strongly by the jet

separation and the interchange of dominance between modes of different types as the

jet separation changes is encouraging, as it provides qualitative agreement with the

observations of Seiner, Manning and Ponton (1988) and Wlezian (1987). However

these results should be treated with some caution as they are based on the vortex

sheet model for the jet. The dominant or preferred mode of a real jet is determined

11



by the total growth of a givenfrequencydisturbancethrough the developing_hear

layer. In the next sectionmore realistic profilesareusedto describethe jet flow.

4. REALISTIC JET FLOW MODEL

4.1 Analysis

In this casethe meanvelocity and density vary in RegionII in a smooth, real-

istic manner. The matching betweenthe potential coreand ambient flow solutions

must be performedusinga numericalsolution in the mixing layer.

In the potential core the solution for the pressurefluctuation takes the form

given by (2.11). Consider,for examplethe modesthat are even about the x - y

plane. For n = -co, ..., co (2.2) may be integrated from r = R1 to r = R2 with

initial conditions,

d# iA, J',,(iX1R_). (4.1)
2= J,(iAiR,) and d--_ -

The corresponding numerical solutions at r = Ra are denoted by/5, and i5'.. These

solutions may be matched with the exterior solutions for all n. That is,

A,/_, = _ Fo/3o,(i_0Ra), (4.2)
$= --co

and

A. 'o = i oFoZ:.(i oR ). (4.3)
°_ --oo

Following the same approach used in Section 3, based on the symmetry properties

of ;ft,,/3., and Fo, a dispersion relationship may be derived from an identical system

of equations to (3.5). However, in this case the F. and h, are defined by,

H("l)(i)_°R2)- h"H_')'(i_°R2) (4.4)
= (i oR ) - A J" (i oR2)

12



and,

,t,, = i_o_./_'.. (4.s)

For modes that are odd about the x - y plane the dispersion relationship may be

obtained from (3.9) with F. and A. defined by eqns.(4.4) and (4.5) respectively.

4.2 Calculations

In the subsequent calculations it is assumed that the mean velocity and density

of the jet flows take the same form as in the single jet case: up to the location where

the jet edges meet. The mean velocity is assumed to take the form:

_(,, _) = { z ' < g(_) (4.6)exp [-ln(2)r/2] r > g(x).

where,

= Ir - gC_)l/b(_). (4.7)

g(x) is the radius of the potential core and b(x) is the half-width of the mixing

layer.

The mean density is related to the mean velocity through a Crocco relationship,

fi= ('Y- -E)M} +3+ T0(1-T) (4.8)
2

where To is the non-dimensional ambient temperature.

From the mean axial momentum integral equation a relationship may be found

between the potential core radius and the hMf-width of the mixing layer,

g(x) = -_,b + v/b_ (_ - 2_2) + 1, (4.9)

where,

_
_1 = _ _2 dr/,

13



and

f0 °

/_2 = _ _2 rldrl.

At some axial location the edges of the two jets will touch on the symmetry

plane and the present analysis, that assumes that the mean flow is axisymmetric

relative to each jet's centerline, is no longer valid. In the present calculations the

edge of the jet is taken to be the location at which the axial velocity given by (4.6)

equals 0.01. This corresponds to a value of rl of 2.58. Thus the pr_ :ent calculations

are for values of jet thickness such that,

9(b)+ 2.ssb < h. (4.10)

A variable step-size fourth-order Runge-Kutta algorithm is used to integrate

(2.2) from the edge of the potential core to rj = 2.58. This gives the values of _5,, and

fi',. As in the vortex sheet calculations the upper limit in the series representations

is taken to be N = 5. Calculations have also been performed with N = 9 with

negligible change in the largest elements of Fo or G,.

The vortex sheet calculations, shown in Fig. 2, indicate that for large separa-

tions the higher azimuthal mode numbers have higher axial growth rates. Addi-

tional calculations show that, for the present operating conditions, the maximum

axial growth rate occurs for n = 3. A similar result is obtained for small values

of local thickness b(x). However, as the jet mixing layer thickens, the higher order

azimuthal modes become damped more quickly. Figure 3 shows the variation of

the axial growth rate -kl as a function of thickness b(x) for a large jet separation

h/r_ = 5.0, for the first three azimuthal modes. In this and subsequent calculations

the fully-expanded jet Mach number is 1.32, the design jet Mach number is 1.0, and

the jet is unheated. Figure 3 shows how the growth rate of the n = 2 mode rapidly

14



decreases.The helical moden = 1 has a larger growth rate than the axisymmetric

mode n = 0 for the all values of jet thickness considered. In the subsequent calcula-

tions only the two lowest mode numbers will be examined. The calculations shown

in Figure 3 give results that are identical to the single jet case.

As the separation decreases so the growth rates of the various mode numbers

and types move away from their large separation value. Figure 4 shows this variation

for mode numbers 0 and 1 and the four mode types. The jet thickness is b = 0.2

and the Strouhal number St = 0.3. The change in the axial growth rate is relatively

small for jet separations greater than 2 radii. For these conditions the most unstable

mode at the closest separation achievable, before the jets' edges merge, is the (1,IV)

mode. This mode is dominated by two helical instabilities that are out of phase

that give a solution that is odd about both the x - y and x - z planes. However,

at other separations other modes are the most unstable.

The relative instability of the various modes at a given separation has been

found to be nearly independent of jet mixing layer thickness. For example, Figure

5 shows the variation of axial growth rate with b(x) for the (0,I) and (0,III) modes.

The single jet, n = 0 value is shown for comparison. In this case, with h/ra = 1.9,

the (0,III) mode is the most unstable at all jet thicknesses.

Before considering the eigenfunctions for the various modes of instability the

effect of wave frequency will be considered. Figure 6 shows the variation of axial

growth rate -k_ with Strouhal number for the same modes shown in Fig. 5. The

mixing layer thickness b = 0.2. Except for the lower Strouhal numbers the (0,III)

mode is more unstable than the (0,I) mode or the n = 0 single jet mode. At

this jet thickness the most unstable frequency occurs for a Strouhal number of

approximately 0.45 and is relatively independent of jet separation or mode type.

15



The real part of the wavenumber is also affected by the jet separation. The

trend in all the cases considered involves an increase in kR for the even modes

about the x - z plane and a decrease in kR for the odd modes as the jet separation

decreases. However, the changes are relatively small involving typically a 10%

change from the single jet value. For example, Figure 7 shows the variation with

mixing layer thickness of the phase velocity, given by w/kR, for the same modes

shown in Figure 5. The phase velocity for the (0,I) mode, that is even about the

x - z plane is lower than the single jet or large separation value. Conversely, the

(0,III) mode, that is odd about the x- z plane takes a higher value. It should

be noticed that for larger thicknesses, where the instability wave is reaching its

maximum amplitude or neutrally stable condition, there is effectively no change in

the phase velocity. In this region the phase velocity is approximately 0.73. Thus the

observed shift in the screech frequency for the twin jets is linked to a change in the

shock cell spacing rather than a modification to the phase velocity of the large scale

structures. Seiner, Manning and Ponton (1988) did observe a 10 to 15% increase

in the shock cell spacing. The reason for this increase is unclear as, in the absence

of ambient flow, the shock cell structure of the two jets should be independent.

However, insufficient aerodynamic data for the twin jets is available at present to

help to explain this observation.

The pressure distributions associated with each mode of instability may be

constructed by obtaining the coefficients Fo or G, for a given eigenvalue. An inverse

iteration technique is used to obtain these values. That is,

iA]rk+l= oFk, (4.11)

where ° is a scaling factor and [A] is given by (3.8).

taken to be {1,1,...,1} r.

An initial guess for F ° is

This algorithm has been found to give convergence in
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two iterations for the cases considered. The interior coefficients may then be found

from (4.2).

For convenience in the present calculations only the pressure field outside the

edge of the jet has been determined. Equation (2.3), rewritten in terms of modes

that are odd or even about the x - y plane, is used to calculate the pressure. For

example, Figure 8 shows contours of equal pressure level for the (0,I) mode and

h/rd ---- 1.9. The phase, given by kx - wt in (2.4) has been set to zero. It can be

seen that the pressure field remains nearly axisymmetric. However, in the region

between the two jets there is a loss of axisymmetry. In this region the amplitude

of the pressure is nearly uniform and equal to the maximum amplitude achieved at

the edge of the jet. The shaded region shows the region of maximum amplitude.

This is the case for all the modes that are even about the x - z plane.

A measure of the azimuthal mode content for each mode of instability and type

is given by the relative magnitudes of the coefficients Fo and G°. Table 2 shows how

these amplitudes vary with jet separation for the (1,III) mode. For each separation

the n = 1 helical mode is dominant. However, for h/rd = 1.5 the n = 0 mode

amplitude rises to 67_0 of that of the n = 1 mode and the n = 2 mode rises to 16%

of the n = 1 mode.

5. DISCUSSION

The present calculations have shown how the growth rates of instability waves

or large structures in the initial mixing region of twin supersonic jets are affected by

the jet separation. This interaction is caused by a coupling of the waves unsteady

flow fields even before the time-averaged jet flows have merged. At a given operating

condition the mode number and type that is most unstable is a function of the jet

separation. However, the quantitative change in the local growth rates are relatively
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small until the separation between the jet centerlines approaches the jet diameter:

that is h/ra _ 1. Though this may be achieved in theory in the case of the vortex

sheet model, similar calculations for the realistic jet profiles are limited to very

small mixing layer thicknesses. At larger thicknesses the jets merge rendering the

present analysis invalid.

The influence of the jet separation on the eigenvalues can be seen from (3.5) to

(3.8). The elements of the matrix A consist of two components: those that depend

on h, the jet separation, and those that do not. In fact, the easiest way to construct

the matrix elements numerically is to first note that the components that depend

on h form a symmetric matrix. The other terms, that only occur on the diagonal,

may then be added. As the separation increases the relative magnitude of the terms

that depend on h decrease rapidly, as Hankel functions, relative to the remaining

components. Eventually, only the terms given by r,, that occur on the diagonal, are

significant. The numerator in (3.6) can be seen to be the dispersion relationship for

azimuthal mode number n for a single jet. Thus the single jet eigenvalues constitute

the zeroes of the determinant of matrix A for large jet separations.

It should be noted that the amplitude achieved by an instability wave depends

on the integrated growth of the wave with axial distance and the local variation in

the shape of the eigenfunction. Thus, relatively small changes in the local growth

rate can result in large changes in the eventual amplitude of the wave. For example,

using the data shown in Fig. 5, and assuming that db/dx is given by the single jet

value for the same operating conditions, the amplitude of the (0,III) mode is 24%

larger for h/rd = 1.9 compared to h/rd ----5.0 at the location where the jets merge

in the former case. However, as mentioned earlier, the rate of spread in the twin jet

case may be decreased by the co-flowing, entrained air between the jets. This would
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increasethe relative amplitude at the merger location. In addition, the pressure

levels between the jets are much higher in the twin jet case for modes I and II as

shown in Fig. 8. However, it is not clear whether changes of this order of magnitude

would be sufficient to explain the observed changes in the near-field pressure levels

when the twin jets resonate.

The present analysis has considered only a part of the feedback cycle associ-

ated with twin jet screech. The instability wave's growth into the merged jet region

must be determined. In this region the merged jet would resemble more closely

a developing rectangular jet. In this case certain normal modes, particularly the

flapping mode about the x - y plane might be enhanced. The interaction between

the instability waves and the shock cell structure in the jet that gives rise to the

upstream propagating acoustic wave must then be described. It should be noted

that existing theories of jet screech are unable to predict the amplitude even for

single circular jets. Experimentally, the occurrence and amplitude of jet screech are

very sensitive to small changes in the detailed geometry of the jet model and labo-

ratory. So a prediction of the occurrence of resonance or its amplitude is extremely

difficult.

To assist in the extension of the present calculations to other sections of the

feedback loop further experimental data on the aerodynamic development of the

twin jets is required. This includes the modification to the rate of growth of the jet

mixing layers, mean flow contours in the merged jet region, and measurements of

the entrained flow between the jets.

Though the present analysis does not answer all the questions regarding the

complex phenomenon of twin jet resonance, it has shown how an instability wave

analysis can provide some insight into the interaction of twin supersonic jets.
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x - y plane x - z plane Mode

even even I

odd even II

even odd III

odd odd IV

Table 1. Classification of Normal Modes.

Mode

number

Relative amplitude

h/r_ = 3.0 h/r_ = 2.0 h/T_= 1.5

0 0.016 0.199 0.199

1 1.000 1.000 1.000

2 0.001 0.098 0.155

3 0.000 0.008 0.019

Table 2. Variation in relative mode amplitude with jet separation, Mode (1,III).

Mj. = 1.32, Ma = 1.0, St = 0.3, b = 0.2.
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Figure Captions

'Fig. 1 Schematic of twin jet cross section and coordinate systems.

Fig. 2 Variation of the axial growth rate -kl with jet spacing. My = 1.32, M,L =

1.0, St = 0.318. , Mode I; .... , Mode II; , Mode III; ...... Mode

IV.

Fig. 3 Variation of the axial growth rate -kl with jet mixing layer thickness.

M s = 1.32, Md = 1.0, St = 0.3,h/rd = 5.0. _, n=0; , n=l;

, n=2.

Fig. 4 Variation of the axial growth rate -kr with jet spacing. M,. = 1.32, M,_ =

1.0, St = 0.3, b = 0.2. --, Mode I; , Mode II; , Mode III;

...... Mode IV.

Fig. 5 Variation of the axial growth rate -kz with jet mixing layer thickness.

Mj = 1.32, Ma = 1.0, St = 0.3. _, n = O, hlra = 5.0; , (O,I),

hlr = 1.9; , (O,III),hlr = 1.9.

Fig. 6 Variation of the axial growth rate -kz with Strouhal number. M, =

1.32, Ma = 1.0, b = 0.2. For legend see Fig. 5.

Fig. 7 Variation of the phase velocity, w/kn, with jet mixing layer thickness. M, =

1.32, Ma = 1.0, St = 0.3. --, n = O, h/ra = 5.0; , (O,I), h/rd = 1.9;

, (O,III), h/rd = 1.9.

Fig. 8 Contours of equal pressure level, Mode (O,I). My = 1.32, Md = 1.0, St =

0.3, h/rd = 1.9. --, outer edge of the jet. Contours from -.025 to -.175 in steps

of -.025.
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